-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDISSIPATION.h
executable file
·333 lines (267 loc) · 8.11 KB
/
DISSIPATION.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
//-------------------------------------------------
// Class for computation of dissipative effects
//-------------------------------------------------
class DISSIPATION
{
EOS *EOFSTATE;
double **VHALF;
double *TAU;
double ETA;
double *VEL, *VELRIEMANN;
int GRIDN;
double *DX, *PXXEVOLVE, *BULKEVOLVE;
double DT;
double *BULKCONST;
public:
DISSIPATION(EOS *e, double *t, double shear, double *V, double *VRIEMANN, int GRIDPOINTS, double *X, double TIME, double *B): EOFSTATE(e), TAU(t), ETA(shear), VEL(V), VELRIEMANN(VRIEMANN) ,GRIDN(GRIDPOINTS), DX(X), DT(TIME), BULKCONST(B)
{
ZERO=4;
STOP=GRIDN+4;
VHALF= new double * [GRIDN+8];
for(int I=0; I<GRIDN+8;I++) VHALF[I] = new double [3];
PXXEVOLVE= new double [GRIDN+8];
BULKEVOLVE= new double [GRIDN+8];
//-------------------------------------------------
// Boundary conditions
//-------------------------------------------------
boundary(VEL);
boundary(VELRIEMANN);
boundary(TAU);
boundary(DX);
boundary(BULKCONST);
}
void get_PXX(double *PXX)
{
for(int I=ZERO; I<STOP; I++)
PXX[I]=PXXEVOLVE[I];
}
void get_bulk(double *BULK)
{
for(int I=ZERO; I<STOP; I++)
BULK[I]=BULKEVOLVE[I];
}
void evolve_dissip(double *PXX, double *BULK);
void evolve_complete(double **VAR, double *PXX, double *BULK);
private:
int ZERO;
int STOP;
void boundary(double *VAR);
double DTIME(double EVELX, double V);
double DPOS(double LVELX, double RVELX, double DEX);
double PIXX(double DERIVX, double DERIVT, double V);
double BULKNS(double DERIVX, double DERIVT, double V);
double UPWIND(double UL, double U, double UR, double VELX,double DELTAX);
};
//-------------------------------------------------
// Temporal evolution of dissipative variables &
// creation of the flow, evolving the whole system
//-------------------------------------------------
void DISSIPATION::evolve_dissip(double *PXX, double *BULK)
{
boundary(PXX);
boundary(BULK);
// Shear viscosity
double RELAX[GRIDN+8];
double NSPIXX[GRIDN+8];
// Bulk viscisty
double BULKRELAX[GRIDN+8];
double NSBULK[GRIDN+8];
for(int I=ZERO-2; I<STOP+2;I++)
{
double DZ=DTIME(VELRIEMANN[I], VEL[I]);
double DO=DPOS(VEL[I-1],VEL[I+1], DX[I]);
double BNS=BULKNS(DO,DZ,VEL[I]);
NSPIXX[I]=PIXX(DO,DZ,VEL[I]);
NSBULK[I]=-BULKCONST[I]*BNS;
}
for(int I=ZERO-2; I<STOP+2; I++)
{
double GAMMA=1/(1-pow(VELRIEMANN[I],2));
RELAX[I]=UPWIND(PXX[I-1],PXX[I], PXX[I+1], VEL[I], DX[I]);
RELAX[I]=((RELAX[I]-NSPIXX[I])*exp(-DT/TAU[I]))+NSPIXX[I];
BULKRELAX[I]=UPWIND(BULK[I-1],BULK[I], BULK[I+1], VEL[I], DX[I]);
BULKRELAX[I]=((BULKRELAX[I]-NSBULK[I])*exp(-DT/TAU[I]))+NSBULK[I];
//-------------------------------------------------
// physical flow
//-------------------------------------------------
VHALF[I][0]=0;
VHALF[I][1]=(BULKRELAX[I]*(1+GAMMA*pow(VELRIEMANN[I],2)))+RELAX[I];
VHALF[I][2]=(BULKRELAX[I]*GAMMA*VELRIEMANN[I])+(RELAX[I]*VELRIEMANN[I]);
}
//-------------------------------------------------
// Temporal evolution of dissipative variables
//-------------------------------------------------
for(int I=ZERO-1; I<STOP+1; I++)
{
PXXEVOLVE[I]=UPWIND(RELAX[I-1],RELAX[I], RELAX[I+1], VELRIEMANN[I], DX[I]);
BULKEVOLVE[I]=UPWIND(BULKRELAX[I-1],BULKRELAX[I], BULKRELAX[I+1], VELRIEMANN[I], DX[I]);
// Avoid unphysical values
// (Too small values can lead to bad results for upwind-scheme)
if(fabs(PXXEVOLVE[I])<10e-12)
PXXEVOLVE[I]=0;
}
}
//-------------------------------------------------
// Evolution of whole system
//-------------------------------------------------
void DISSIPATION::evolve_complete(double **VAR,double *PXX, double *BULK)
{
double V [GRIDN+8];
double UINITIAL[GRIDN+8][3];
//-------------------------------------------------
// Compute conservative variables and velocity
// before applying Riemann-Solver
//-------------------------------------------------
for(int I=ZERO; I<STOP ;I++)
{
double W=1/sqrt(1-pow(VAR[I][1],2));
double T=EOFSTATE->get_temperature(VAR[I][2]);
double E=EOFSTATE->get_energy(T);
V[I]=VEL[I];
UINITIAL[I][0]=VAR[I][0]*W;
UINITIAL[I][1]=(E+VAR[I][2])*pow(W,2)*VAR[I][1];
UINITIAL[I][2]=(E+VAR[I][2])*pow(W,2)-VAR[I][2];
}
for(int I=ZERO; I<STOP; I++)
{
double GAMMA=1/(1-pow(V[I],2));
UINITIAL[I][0]=UINITIAL[I][0];
UINITIAL[I][1]=UINITIAL[I][1]+BULK[I]*GAMMA*V[I]+PXX[I]*V[I];
UINITIAL[I][2]=UINITIAL[I][2]+(GAMMA-1)*BULK[I]+PXX[I];
}
//-------------------------------------------------
// Temporal evolution of the whole system
//-------------------------------------------------
for(int I=ZERO; I<STOP; I++)
{
double DELTA=DT/(DX[I]);
for(int K=0; K<3; K++)
{
double FMIN=0.5*(VHALF[I-1][K]+VHALF[I][K]);
double FPLU=0.5*(VHALF[I+1][K]+VHALF[I][K]);
UINITIAL[I][K]=(UINITIAL[I][K])+DELTA*(FMIN-FPLU);
}
}
for(int I=ZERO; I<STOP; I++)
{
V[I]=VELRIEMANN[I];
}
//-------------------------------------------------
// Recover primitive variables while taking
// dissipative effects under consideration
//-------------------------------------------------
#pragma omp parallel for
for(int I=ZERO; I<STOP; I++)
{
int COND=0;
double UDISSIPATION[3];
double T1=0;
while(COND == 0)
{
double GAMMA=1/(1-pow(V[I],2));
UDISSIPATION[0]=0;
UDISSIPATION[1]=BULK[I]*GAMMA*V[I]+PXX[I]*V[I];
UDISSIPATION[2]=(GAMMA-1)*BULK[I]+PXX[I];
double T;
double TEMP[3];
for(int J=0; J<3; J++)
{
if(fabs(UINITIAL[I][J])< 0.8*fabs(UDISSIPATION[J]))
{
cout << "UNPHYSICAL DISSIPATION!!!" << endl;
TEMP[J]=UINITIAL[I][J];
}
else
TEMP[J]=UINITIAL[I][J]-UDISSIPATION[J];
}
VAR[I][2]=EOFSTATE->recovery(TEMP);
T=EOFSTATE->get_temperature(VAR[I][2]);
VAR[I][0]=EOFSTATE->get_baryondensity(T,24);
//Vermeidung von zu kleinen Druecken
if(VAR[I][2] < 10e-10) VAR[I][2]=0;
//-------------------------------------------------
// Test if baryon density or velocity is unphysical
//-------------------------------------------------
if(VAR[I][0] > 1)
{
cout << "NB NOT PHYSICAL: " << VAR[I][0] << endl;
VAR[I][0]=10e-10;
}
VAR[I][1]=TEMP[1]/(TEMP[2]+VAR[I][2]);
if(VAR[I][1] > 1) cout << "UNPHYSICAL VELOCITY" << endl;
if(fabs(T-T1) <10e-8) COND=1;
else
{
T1=T;
V[I]=VAR[I][1];
}
}
}
}
//-------------------------------------------------
// Compute of upwind-scheme
//-------------------------------------------------
double DISSIPATION::UPWIND(double UL, double U, double UR, double VELX,double DELTAX)
{
// Compute only half time step because of
// Strang Splitting
double DELTA=(DT*VELX)/(DELTAX*2);
if(VELX >0)
{
return U-(DELTA*(U-UL));
}
else
{
if(VELX <0)
{
return U-(DELTA*(UR-U));
}
else
return U;
}
}
//-------------------------------------------------
// Computation of spacial- and temporal derivative
// for the Navier-Stokes values
//-------------------------------------------------
double DISSIPATION::DTIME(double EVELX, double V)
{
return (EVELX-V)/DT;
}
double DISSIPATION::DPOS(double LVELX, double RVELX, double DEX)
{
return (RVELX-LVELX)/(2*DEX);
}
//-------------------------------------------------
// Navier-Stokes values
//-------------------------------------------------
double DISSIPATION::PIXX(double DERIVX, double DERIVT, double V)
{
double GAMMA=1/sqrt(1-pow(V,2));
double A=(pow(GAMMA,3)*pow(V,2)+GAMMA)*DERIVX;
double B=(pow(GAMMA,3)*pow(V,2)+GAMMA)*DERIVT;
double C=pow(GAMMA,3)*V*DERIVT;
double D= (1+pow(GAMMA,2)*pow(V,2))/3;
return 2*ETA*(-A-GAMMA*V*(GAMMA*B+GAMMA*V*A)+D*(C+A));
}
double DISSIPATION::BULKNS(double DERIVX, double DERIVT, double V)
{
double GAMMA=1/sqrt(1-pow(V,2));
double A=(pow(GAMMA,3)*pow(V,2)+GAMMA)*DERIVX;
double C=pow(GAMMA,3)*V*DERIVT;
return (C+A);
}
//-------------------------------------------------
// Bounday Conditions
//-------------------------------------------------
void DISSIPATION::boundary(double *VAR)
{
//-------------------------------------------------
//FLOW OUT
//-------------------------------------------------
for(int I=1; I<=4; I++)
{
VAR[ZERO-I]=VAR[ZERO];
VAR[STOP-1+I]=VAR[STOP-1];
}
}