-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
onnx_infer.py
60 lines (56 loc) · 1.29 KB
/
onnx_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from onnx_modules.V220_OnnxInference import OnnxInferenceSession
import numpy as np
Session = OnnxInferenceSession(
{
"enc": "onnx/BertVits2.2PT/BertVits2.2PT_enc_p.onnx",
"emb_g": "onnx/BertVits2.2PT/BertVits2.2PT_emb.onnx",
"dp": "onnx/BertVits2.2PT/BertVits2.2PT_dp.onnx",
"sdp": "onnx/BertVits2.2PT/BertVits2.2PT_sdp.onnx",
"flow": "onnx/BertVits2.2PT/BertVits2.2PT_flow.onnx",
"dec": "onnx/BertVits2.2PT/BertVits2.2PT_dec.onnx",
},
Providers=["CPUExecutionProvider"],
)
# 这里的输入和原版是一样的,只需要在原版预处理结果出来之后加上.numpy()即可
x = np.array(
[
0,
97,
0,
8,
0,
78,
0,
8,
0,
76,
0,
37,
0,
40,
0,
97,
0,
8,
0,
23,
0,
8,
0,
74,
0,
26,
0,
104,
0,
]
)
tone = np.zeros_like(x)
language = np.zeros_like(x)
sid = np.array([0])
bert = np.random.randn(x.shape[0], 1024)
ja_bert = np.random.randn(x.shape[0], 1024)
en_bert = np.random.randn(x.shape[0], 1024)
emo = np.random.randn(512, 1)
audio = Session(x, tone, language, bert, ja_bert, en_bert, emo, sid)
print(audio)