-
Notifications
You must be signed in to change notification settings - Fork 408
/
Copy pathdata-table-utils.js
115 lines (106 loc) · 4.37 KB
/
data-table-utils.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// @flow
/**
* A "data table" is a JS object of the form:
* {
* length: <length>
* someColumnName: SomeType[<length>]
* someOtherColumnName: SomeOtherType[<length>]
* }
*/
type DataTable = {
[key: string]: mixed[],
length: number,
};
type compareFn<T> = { (a: T, b: T): number };
/**
* Sorts the data table |table|, affecting all columns.
* This is necessary because Array.prototype.sort doesn't let you sort
* multiple arrays at the same time; you'd need to convert from
* struct-of-arrays form to array-of-structs, sort, and convert back into
* struct-of-arrays form.
* This function lets you sort without conversion, and saves the garbage
* allocation that this would cause.
* @param {object} table The data table. Gets mutated.
* @param {string} keyColumn The column whose values to pass to the
* comparator function. E.g. table.time
* @param {function} comparator A comparator function that receives two
* arguments which are values from keyColumn,
* and behaves like one that you'd pass to
* Array.prototype.sort.
* @returns The data table.
*/
export function sortDataTable<KeyColumnElementType>(
table: DataTable,
keyColumn: KeyColumnElementType[],
comparator: compareFn<KeyColumnElementType>
): DataTable {
function swap(i, j) {
if (i !== j) {
for (const columnName in table) {
if (columnName !== 'length') {
const column = table[columnName];
const temp = column[i];
column[i] = column[j];
column[j] = temp;
}
}
}
}
// Reorders the values in the range left <= k <= right and returns an index
// "partitionIndex" such that the elements at k for left <= k < partitionIndex
// are < pivotValue, the elements at k for partitionIndex < k <= right
// are >= pivotValue, and the element at partitionIndex is == pivotValue.
// If the range is already sorted, no swaps are performed.
function partition(pivot, left, right) {
const pivotValue = keyColumn[pivot];
// At the end of each iteration, the following is true:
// All elements at k for left <= k < partitionIndex are < pivotValue.
// All elements at k for partitionIndex <= k <= i are >= pivotValue.
// Specifically, the element at partitionIndex is the first one in the
// range left <= k <= right which is potentially >= pivotValue, and which
// will need to be moved out of the way when encountering an element
// that's < pivotValue.
let partitionIndex = left;
let pivotIndex = pivot;
for (let i = left; i <= right; i++) {
if (comparator(keyColumn[i], pivotValue) < 0) {
swap(i, partitionIndex);
if (partitionIndex === pivotIndex) {
// We just swapped our pivot away. Update pivotIndex to keep track
// of it.
pivotIndex = i;
}
partitionIndex++;
}
}
// Swap the pivot back into the position at partitionIndex.
swap(partitionIndex, pivotIndex);
return partitionIndex;
}
function quickSort(left, right) {
if (left < right) {
// QuickSort's effectiveness depends on its ability to partition the
// sequence being sorted into two subsequences of roughly equal length:
// by halving the length at each recursion level, the subproblems get
// smaller faster. To get a good partition, we must choose a pivot value
// that is close to the median of the values in the sequence: by
// definition, half of the values will fall before the median, half
// after it.
// If the sequence is already mostly sorted, then choosing the first or
// last value as the pivot is probably as far from the median as you
// could possibly get; this is a "pessimal", not optimal, choice.
// Choosing the middle value as the pivot is likely to be much closer to
// the median.
const pivot = (left + right) >> 1;
const partitionIndex = partition(pivot, left, right);
// Sort left and right
quickSort(left, partitionIndex - 1);
quickSort(partitionIndex + 1, right);
}
}
quickSort(0, table.length - 1);
return table;
}