diff --git a/Scripts/staking_plots.R b/Scripts/staking_plots.R index dd9293e..8389ad6 100644 --- a/Scripts/staking_plots.R +++ b/Scripts/staking_plots.R @@ -68,7 +68,7 @@ all_stakers_voters$date <- Sys.Date() + (all_stakers_voters$era - max(all_staker ## Plots ---- -lookback = 18 +lookback = 373 plot1 <- ggplot(data = pct_less_100_comm, aes(x = date, y = n100)) + geom_line(colour = "black") + @@ -79,10 +79,10 @@ plot1 <- ggplot(data = pct_less_100_comm, aes(x = date, y = n100)) + # panel.grid.minor = element_line(color = 'white', size = 0.2)) data_plot1 <- pct_less_100_comm[pct_less_100_comm$date >= (max(pct_less_100_comm$date) - lookback),] -avail_delta <- round((tail(data_plot1$n100, n = 1) - data_plot1$n100[1]), 2) -avail_start <- round(data_plot1$n100[1], 2) -avail_end <- round(tail(data_plot1$n100, n = 1), 2) -availPct <- round((tail(data_plot1$n100, n = 1) - data_plot1$n100[1])/data_plot1$n100[1]*100, 2) +avail_delta <- round((data_plot1$n100[data_plot1$date == max(data_plot1$date)] - data_plot1$n100[data_plot1$date == min(data_plot1$date)]), 2) +avail_start <- round(data_plot1$n100[data_plot1$date == min(data_plot1$date)], 2) +avail_end <- round(data_plot1$n100[data_plot1$date == max(data_plot1$date)], 2) +availPct <- round((data_plot1$n100[data_plot1$date == max(data_plot1$date)] - data_plot1$n100[data_plot1$date == min(data_plot1$date)])/data_plot1$n100[data_plot1$date == min(data_plot1$date)]*100, 2) plot2 <- ggplot(data = tot_stake, aes(x = date, y = m/10^16)) + @@ -90,30 +90,30 @@ plot2 <- ggplot(data = tot_stake, aes(x = date, y = m/10^16)) + geom_ribbon(aes(ymin = (m - se)/10^16, ymax = (m + se)/10^16), alpha = 0.5) + ylab("Average total stake per node (MDOT)") + xlab("Date") + - xlim(c(max(date) - lookback, max(date))) + ylim(c(2, 2.5)) + xlim(c(max(date) - lookback, max(date))) + ylim(c(1.75, 2.5)) data_plot2 <- tot_stake[tot_stake$date >= (max(tot_stake$date) - lookback),] -stake_delta <- round((tail(data_plot2$m, n = 1) - data_plot2$m[1])/10^10, 2) -stake_start <- round(data_plot2$m[1]/10^16, 2) -stake_end <- round(tail(data_plot2$m, n = 1)/10^16, 2) -stakePct <- round((tail(data_plot2$m, n = 1) - data_plot2$m[1])/data_plot2$m[1]*100, 2) +stake_delta <- round((data_plot2$m[data_plot2$date == max(data_plot2$date)] - data_plot2$m[data_plot2$date == min(data_plot2$date)])/10^10, 2) +stake_start <- round(data_plot2$m[data_plot2$date == min(data_plot2$date)]/10^16, 2) +stake_end <- round(data_plot2$m[data_plot2$date == max(data_plot2$date)]/10^16, 2) +stakePct <- round((data_plot2$m[data_plot2$date == max(data_plot2$date)] - data_plot2$m[data_plot2$date == min(data_plot2$date)])/data_plot2$m[data_plot2$date == min(data_plot2$date)]*100, 2) -stake_delta_se <- round((tail(data_plot2$se, n = 1) - data_plot2$se[1])/10^10, 2) -stake_start_se <- round(data_plot2$se[1]/10^10, 2) -stake_end_se <- round(tail(data_plot2$se, n = 1)/10^10, 2) -stakePct_se <- round((tail(data_plot2$se, n = 1) - data_plot2$se[1])/data_plot2$se[1]*100, 2) +stake_delta_se <- round((data_plot2$se[data_plot2$date == max(data_plot2$date)] - data_plot2$se[data_plot2$date == min(data_plot2$date)])/10^10, 2) +stake_start_se <- round(data_plot2$se[data_plot2$date == min(data_plot2$date)]/10^10, 2) +stake_end_se <- round(data_plot2$se[data_plot2$date == max(data_plot2$date)]/10^10, 2) +stakePct_se <- round((data_plot2$se[data_plot2$date == max(data_plot2$date)] - data_plot2$se[data_plot2$date == min(data_plot2$date)])/data_plot2$se[data_plot2$date == min(data_plot2$date)]*100, 2) plot3 <- ggplot(data = mab_data, aes(x = date, y = mab)) + geom_line() + ylab("Minimum Active Bond (DOT)") + xlab("Date") + - xlim(c(max(date) - lookback, max(date))) + ylim(c(400, 600)) + xlim(c(max(date) - lookback, max(date))) + ylim(c(200, 600)) data_plot3 <- mab_data[mab_data$date >= (max(mab_data$date) - lookback),] -mab_delta <- round((tail(data_plot3$mab, n = 1) - data_plot3$mab[1]), 2) -mab_end <- round(tail(data_plot3$mab, n = 1), 2) -mab_start <- round(data_plot3$mab[1], 2) -mabPct <- round((tail(data_plot3$mab, n = 1) - data_plot3$mab[1])/data_plot3$mab[1]*100, 2) +mab_delta <- round((data_plot3$mab[data_plot3$date == max(data_plot3$date)] - data_plot3$mab[data_plot3$date == min(data_plot3$date)]), 2) +mab_end <- round(data_plot3$mab[data_plot3$date == max(data_plot3$date)], 2) +mab_start <- round(data_plot3$mab[data_plot3$date == min(data_plot3$date)], 2) +mabPct <- round((data_plot3$mab[data_plot3$date == max(data_plot3$date)] - data_plot3$mab[data_plot3$date == min(data_plot3$date)])/data_plot3$mab[data_plot3$date == min(data_plot3$date)]*100, 2) colors <- c("Voters" = "black", "Stakers" = "blue") @@ -127,15 +127,15 @@ plot4 <- ggplot(data = all_stakers_voters, aes(x = date)) + data_plot4 <- all_stakers_voters[all_stakers_voters$date >= (max(all_stakers_voters$date) - lookback),] -stakers_delta <- round((tail(data_plot4$n_stakers, n = 1) - data_plot4$n_stakers[1]), 2) -stakers_end <- round(tail(data_plot4$n_stakers, n = 1), 2) -stakers_start <- round(data_plot4$n_stakers[1], 2) -stakersPct <- round((tail(data_plot4$n_stakers, n = 1) - data_plot4$n_stakers[1])/data_plot4$n_stakers[1]*100, 2) +stakers_delta <- round((data_plot4$n_stakers[data_plot4$date == max(data_plot4$date)] - data_plot4$n_stakers[data_plot4$date == min(data_plot4$date)]), 2) +stakers_end <- round(data_plot4$n_stakers[data_plot4$date == max(data_plot4$date)], 2) +stakers_start <- round(data_plot4$n_stakers[data_plot4$date == min(data_plot4$date)], 2) +stakersPct <- round((data_plot4$n_stakers[data_plot4$date == max(data_plot4$date)] - data_plot4$n_stakers[data_plot4$date == min(data_plot4$date)])/data_plot4$n_stakers[data_plot4$date == min(data_plot4$date)]*100, 2) -voters_delta <- round((tail(data_plot4$n_voters, n = 1) - data_plot4$n_voters[1]), 2) -voters_end <- round(tail(data_plot4$n_voters, n = 1), 2) -voters_start <- round(data_plot4$n_voters[1], 2) -votersPct <- round((tail(data_plot4$n_voters, n = 1) - data_plot4$n_voters[1])/data_plot4$n_voters[1]*100, 2) +voters_delta <- round((data_plot4$n_voters[data_plot4$date == max(data_plot4$date)] - data_plot4$n_voters[data_plot4$date == min(data_plot4$date)]), 2) +voters_end <- round(data_plot4$n_voters[data_plot4$date == max(data_plot4$date)], 2) +voters_start <- round(data_plot4$n_voters[data_plot4$date == min(data_plot4$date)], 2) +votersPct <- round((data_plot4$n_voters[data_plot4$date == max(data_plot4$date)] - data_plot4$n_voters[data_plot4$date == min(data_plot4$date)])/data_plot4$n_voters[data_plot4$date == min(data_plot4$date)]*100, 2) grid.arrange(plot3, plot4, plot2, plot1, nrow = 2)