-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathukf_predict3.m
109 lines (100 loc) · 2.61 KB
/
ukf_predict3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
%UKF_PREDICT3 Augmented (state, process and measurement noise) UKF prediction step
%
% Syntax:
% [M,P,X,w] = UKF_PREDICT3(M,P,f,Q,R,f_param,alpha,beta,kappa)
%
% In:
% M - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% f - Dynamic model function as inline function,
% function handle or name of function in
% form a([x;w],param)
% Q - Non-singular covariance of process noise w
% R - Measurement covariance.
% f_param - Parameters of f (optional, default empty)
% alpha - Transformation parameter (optional)
% beta - Transformation parameter (optional)
% kappa - Transformation parameter (optional)
% mat - If 1 uses matrix form (optional, default 0)
%
% Out:
% M - Updated state mean
% P - Updated state covariance
% X - Sigma points of x
% w - Weights as cell array {mean-weights,cov-weights,c}
%
% Description:
% Perform augmented form Unscented Kalman Filter prediction step
% for model
%
% x[k+1] = a(x[k],w[k],param)
%
% Function a should be such that it can be given
% DxN matrix of N sigma Dx1 points and it returns
% the corresponding predictions for each sigma
% point.
%
% See also:
% UKF_PREDICT1, UKF_UPDATE1, UKF_PREDICT2, UKF_UPDATE2, UKF_UPDATE3
% UT_TRANSFORM, UT_WEIGHTS, UT_MWEIGHTS, UT_SIGMAS
% Copyright (C) 2003-2006 Simo S�rkk�
% Copyright (C) 2007 Jouni Hartikainen
%
% $Id: ukf_predict3.m 480 2010-10-18 07:45:48Z jmjharti $
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [M,P,X,w,C] = ukf_predict3(M,P,f,Q,R,f_param,alpha,beta,kappa,mat)
%
% Check which arguments are there
%
if nargin < 2
error('Too few arguments');
end
if nargin < 3
f = [];
end
if nargin < 4
Q = [];
end
if nargin < 5
R = [];
end
if nargin < 6
f_param = [];
end
if nargin < 7
alpha = [];
end
if nargin < 8
beta = [];
end
if nargin < 9
kappa = [];
end
if nargin < 10
mat = [];
end
%
% Apply defaults
%
if isempty(mat)
mat = 0;
end
%
% Do transform
% and add process and measurement noises
%
MA = [M;zeros(size(Q,1),1);zeros(size(R,1),1)];
PA = zeros(size(P,1)+size(Q,1)+size(R,1));
i1 = size(P,1);
i2 = i1+size(Q,1);
PA(1:i1,1:i1) = P;
PA(1+i1:i2,1+i1:i2) = Q;
PA(1+i2:end,1+i2:end) = R;
tr_param = {alpha beta kappa mat};
[M,P,C,X_s,X_pred,w] = ut_transform(MA,PA,f,f_param,tr_param);
% Save sigma points
X = X_s;
X(1:size(X_pred,1),:) = X_pred;