-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathngausshermi.m
123 lines (110 loc) · 3 KB
/
ngausshermi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
function [I,SX,x,W,F] = ngausshermi(f,n,m,P,param)
% NGAUSSHERMI - ND scaled Gauss-Hermite quadrature (cubature) rule
%
% Syntax:
% [I,x,W,F] = ngausshermi(f,p,m,P,param)
%
% In:
% f - Function f(x,param) as inline, name or reference
% n - Polynomial order
% m - Mean of the d-dimensional Gaussian distribution
% P - Covariance of the Gaussian distribution
% param - Optional parameters for the function
%
% Out:
% I - The integral value
% x - Evaluation points
% W - Weights
% F - Function values
%
% Description:
% Approximates a Gaussian integral using the Gauss-Hermite method
% in multiple dimensions:
% int f(x) N(x | m,P) dx
% History:
% 2009 - Initial version (ssarkka)
% 2010 - Partially rewritten (asolin)
% Copyright (c) 2010 Simo Sarkka, Arno Solin
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
%% THEORY OF OPERATION:
%
% Consider the multidimensional integral:
%
% int f(x1,...,xn) exp(-x1^2-...-xn^2) dx1...dxn
%
% If we form quadrature for dimension 1, then
% for dimension 2 and so on, we get
%
% = sum w_i1 int f(x1^i1,...,xn) exp(-x2^2-...-xn^2) dx2...dxn
% = sum w_i1 w_i1 int f(x1^i1,x2^i2,...,xn) exp(-x3^2-...-xn^2) dx3...dxn
% = ...
% = sum w_i1 ... w_in f(x1^i1,...,xn^in)
%
% Now let X = [x1,...,xn] and consider
%
% 1/(2pi)^{n/2}/sqrt(|P|) int f(X) exp(-1/2 (X-M)' iP (X-M)) dX
%
% Let P = L L' and change variable to
%
% X = sqrt(2) L Y + M <=> Y = 1/sqrt(2) iL (X-M)
%
% then dX = sqrt(2)^n |L] dY = sqrt(2)^n sqrt(|P]) dY i.e. we get
%
% 1/(2pi)^{n/2}/sqrt(|P|) int f(X) exp(-1/2 (X-M)' iP (X-M)) dX
% = 1/(pi)^{n/2} int f(sqrt(2) L Y + M) exp(-Y'Y) dY
% = int g(Y) exp(-Y'Y) dY
%
% which is of the previous form if we define
%
% g(Y) = 1/(pi)^{n/2} f(sqrt(2) L Y + M)
%
%% The Gauss-Hermite cubature rule
% The hermite polynomial of order n
p = hermitepolynomial(n);
% Evaluation points
x = roots(p);
% 1D coefficients
Wc = pow2(n-1)*factorial(n)*sqrt(pi)/n^2;
p2 = hermitepolynomial(n-1);
W = zeros(1,n);
for i=1:n
W(i)=Wc*polyval(p2,x(i)).^-2;
end
d = size(m,1);
if d == 1
x = x';
end
% Generate all n^d collections of indexes by
% transforming numbers 0...n^d-1) into n-base system
% and by adding 1 to each digit
num = 0:(n^d-1);
ind = zeros(d,n^d);
for i=1:d
ind(i,:) = rem(num,n)+1;
num = floor(num / n);
end
% Form the sigma points and weights
L = chol(P)';
SX = sqrt(2)*L*x(ind)+repmat(m,1,size(ind,2));
W = prod(W(ind),1); % ND weights
% Evaluate the function at the sigma points
if ischar(f) || strcmp(class(f),'function_handle')
if nargin < 5
F = feval(f,SX);
else
F = feval(f,SX,param);
end
elseif isnumeric(f)
F = f*SX;
else
if nargin < 5
F = f(SX);
else
F = f(SX,param);
end
end
% Evaluate the integral
I = 1/sqrt(pi)^d*sum(F.*repmat(W,size(F,1),1),2);