-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathkf_predict.m
94 lines (89 loc) · 2.26 KB
/
kf_predict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
%KF_PREDICT Perform Kalman Filter prediction step
%
% Syntax:
% [X,P] = KF_PREDICT(X,P,A,Q,B,U)
%
% In:
% X - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% A - Transition matrix of discrete model (optional, default identity)
% Q - Process noise of discrete model (optional, default zero)
% B - Input effect matrix (optional, default identity)
% U - Constant input (optional, default empty)
%
% Out:
% X - Predicted state mean
% P - Predicted state covariance
%
% Description:
% Perform Kalman Filter prediction step. The model is
%
% x[k] = A*x[k-1] + B*u[k-1] + q, q ~ N(0,Q).
%
% The predicted state is distributed as follows:
%
% p(x[k] | x[k-1]) = N(x[k] | A*x[k-1] + B*u[k-1], Q[k-1])
%
% The predicted mean x-[k] and covariance P-[k] are calculated
% with the following equations:
%
% m-[k] = A*x[k-1] + B*u[k-1]
% P-[k] = A*P[k-1]*A' + Q.
%
% If there is no input u present then the first equation reduces to
% m-[k] = A*x[k-1]
%
% History:
%
% 26.2.2007 JH Added the distribution model for the predicted state
% and equations for calculating the predicted state mean and
% covariance to the description section.
%
% See also:
% KF_UPDATE, LTI_DISC, EKF_PREDICT, EKF_UPDATE
% Copyright (C) 2002-2006 Simo Särkkä
% Copyright (C) 2007 Jouni Hartikainen
%
% $Id: kf_predict.m 111 2007-09-04 12:09:23Z ssarkka $
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [x,P] = kf_predict(x,P,A,Q,B,u)
%
% Check arguments
%
if nargin < 3
A = [];
end
if nargin < 4
Q = [];
end
if nargin < 5
B = [];
end
if nargin < 6
u = [];
end
%
% Apply defaults
%
if isempty(A)
A = eye(size(x,1));
end
if isempty(Q)
Q = zeros(size(x,1));
end
if isempty(B) & ~isempty(u)
B = eye(size(x,1),size(u,1));
end
%
% Perform prediction
%
if isempty(u)
x = A * x;
P = A * P * A' + Q;
else
x = A * x + B * u;
P = A * P * A' + Q;
end