-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathekf_update1.m
114 lines (103 loc) · 2.59 KB
/
ekf_update1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
%EKF_UPDATE1 1st order Extended Kalman Filter update step
%
% Syntax:
% [M,P,K,MU,S,LH] = EKF_UPDATE1(M,P,Y,H,R,[h,V,param])
%
% In:
% M - Nx1 mean state estimate after prediction step
% P - NxN state covariance after prediction step
% Y - Dx1 measurement vector.
% H - Derivative of h() with respect to state as matrix,
% inline function, function handle or name
% of function in form H(x,param)
% R - Measurement noise covariance.
% h - Mean prediction (innovation) as vector,
% inline function, function handle or name
% of function in form h(x,param). (optional, default H(x)*X)
% V - Derivative of h() with respect to noise as matrix,
% inline function, function handle or name
% of function in form V(x,param). (optional, default identity)
% param - Parameters of h (optional, default empty)
%
% Out:
% M - Updated state mean
% P - Updated state covariance
% K - Computed Kalman gain
% MU - Predictive mean of Y
% S - Predictive covariance of Y
% LH - Predictive probability (likelihood) of measurement.
%
% Description:
% Extended Kalman Filter measurement update step.
% EKF model is
%
% y[k] = h(x[k],r), r ~ N(0,R)
%
% See also:
% EKF_PREDICT1, EKF_PREDICT2, EKF_UPDATE2, DER_CHECK,
% LTI_DISC, KF_UPDATE, KF_PREDICT
% Copyright (C) 2002-2006 Simo Särkkä
%
% $Id: ekf_update1.m 137 2008-02-20 11:46:08Z jmjharti $
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [M,P,K,MU,S,LH] = ekf_update1(M,P,y,H,R,h,V,param)
%
% Check which arguments are there
%
if nargin < 5
error('Too few arguments');
end
if nargin < 6
h = [];
end
if nargin < 7
V = [];
end
if nargin < 8
param = [];
end
%
% Apply defaults
%
if isempty(V)
V = eye(size(R,1));
end
%
% Evaluate matrices
%
if isnumeric(H)
% nop
elseif isstr(H) | strcmp(class(H),'function_handle')
H = feval(H,M,param);
else
H = H(M,param);
end
if isempty(h)
MU = H*M;
elseif isnumeric(h)
MU = h;
elseif isstr(h) | strcmp(class(h),'function_handle')
MU = feval(h,M,param);
else
MU = h(M,param);
end
if isnumeric(V)
% nop
elseif isstr(V) | strcmp(class(V),'function_handle')
V = feval(V,M,param);
else
V = V(M,param);
end
%
% update step
%
S = (V*R*V' + H*P*H');
K = P*H'/S;
M = M + K * (y-MU);
P = P - K*S*K';
if nargout > 5
LH = gauss_pdf(y,MU,S);
end