forked from temporalio/samples-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhello_activity_retry.py
70 lines (57 loc) · 2.22 KB
/
hello_activity_retry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import asyncio
from dataclasses import dataclass
from datetime import timedelta
from temporalio import activity, workflow
from temporalio.client import Client
from temporalio.common import RetryPolicy
from temporalio.worker import Worker
@dataclass
class ComposeGreetingInput:
greeting: str
name: str
@activity.defn
async def compose_greeting(input: ComposeGreetingInput) -> str:
print(f"Invoking activity, attempt number {activity.info().attempt}")
# Fail the first 3 attempts, succeed the 4th
if activity.info().attempt < 4:
raise RuntimeError("Intentional failure")
return f"{input.greeting}, {input.name}!"
@workflow.defn
class GreetingWorkflow:
@workflow.run
async def run(self, name: str) -> str:
# By default activities will retry, backing off an initial interval and
# then using a coefficient of 2 to increase the backoff each time after
# for an unlimited amount of time and an unlimited number of attempts.
# We'll keep those defaults except we'll set the maximum interval to
# just 2 seconds.
# @@@SNIPSTART python-activity-retry
return await workflow.execute_activity(
compose_greeting,
ComposeGreetingInput("Hello", name),
start_to_close_timeout=timedelta(seconds=10),
retry_policy=RetryPolicy(maximum_interval=timedelta(seconds=2)),
)
# @@@SNIPEND
async def main():
# Start client
client = await Client.connect("localhost:7233")
# Run a worker for the workflow
async with Worker(
client,
task_queue="hello-activity-retry-task-queue",
workflows=[GreetingWorkflow],
activities=[compose_greeting],
):
# While the worker is running, use the client to run the workflow and
# print out its result. Note, in many production setups, the client
# would be in a completely separate process from the worker.
result = await client.execute_workflow(
GreetingWorkflow.run,
"World",
id="hello-activity-retry-workflow-id",
task_queue="hello-activity-retry-task-queue",
)
print(f"Result: {result}")
if __name__ == "__main__":
asyncio.run(main())