-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCalculator_CCA_HEA.py
237 lines (197 loc) · 8.81 KB
/
Calculator_CCA_HEA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# AUTHOR: Fernando Henrique da Costa <[email protected]>
# DATE CREATED: 04/11/2020
import pandas as pd
import math
import numpy as np
import re
import os
DECIMALS = 3
scriptdir = os.path.dirname(os.path.abspath(__file__))
# Open database of enthalpy mixing
enthalpy_data = pd.read_csv(os.path.join(scriptdir, './Enthalpydata.csv'))
# Open the database with the elements' properties
eledata = pd.read_csv(os.path.join(scriptdir, './Elementdata.csv'))
# Dictionary with the elements and their atomic masses
atomic_mass = {'H': 1.00797, 'He': 4.0026, 'Li': 6.941, 'Be': 9.01218, 'B': 10.81,
'C': 12.011, 'N': 14.0067, 'O': 15.9994, 'F': 18.998403, 'Ne': 20.179, 'Na': 22.98977,
'Mg': 24.305, 'Al': 26.98154, 'Si': 28.0855, 'P': 30.97376, 'S': 32.06, 'Cl': 35.453,
'K': 39.0983, 'Ar': 39.948, 'Ca': 40.08, 'Sc': 44.9559, 'Ti': 47.9, 'V': 50.9415,
'Cr': 51.996, 'Mn': 54.938, 'Fe': 55.847, 'Ni': 58.7, 'Co': 58.9332, 'Cu': 63.546,
'Zn': 65.38, 'Ga': 69.72, 'Ge': 72.59, 'As': 74.9216, 'Se': 78.96,
'Br': 79.904, 'Kr': 83.8, 'Rb': 85.4678, 'Sr': 87.62, 'Y': 88.9059,
'Zr': 91.22, 'Nb': 92.9064, 'Mo': 95.94, 'Tc': 98, 'Ru': 101.07,
'Rh': 102.9055, 'Pd': 106.4, 'Ag': 107.868, 'Cd': 112.41, 'In': 114.82,
'Sn': 118.69, 'Sb': 121.75, 'I': 126.9045, 'Te': 127.6, 'Xe': 131.3,
'Cs': 132.9054, 'Ba': 137.33, 'La': 138.9055, 'Ce': 140.12, 'Pr': 140.9077,
'Nd': 144.24, 'Pm': 145, 'Sm': 150.4, 'Eu': 151.96, 'Gd': 157.25, 'Tb': 158.9254,
'Dy': 162.5, 'Ho': 164.9304, 'Er': 167.26, 'Tm': 168.9342, 'Yb': 173.04,
'Lu': 174.967, 'Hf': 178.49, 'Ta': 180.9479, 'W': 183.85, 'Re': 186.207,
'Os': 190.2, 'Ir': 192.22, 'Pt': 195.09, 'Au': 196.9665, 'Hg': 200.59,
'Tl': 204.37, 'Pb': 207.2, 'Bi': 208.9804, 'Po': 209, 'At': 210,
'Rn': 222, 'Fr': 223, 'Ra': 226.0254, 'Ac': 227.0278, 'Pa': 231.0359,
'Th': 232.0381, 'Np': 237.0482, 'U': 238.029, 'Pu': 242, 'Am': 243,
'Bk': 247, 'Cm': 247, 'No': 250, 'Cf': 251, 'Es': 252, 'Hs': 255,
'Mt': 256, 'Fm': 257, 'Md': 258, 'Lr': 260, 'Rf': 261, 'Bh': 262,
'Db': 262, 'Sg': 263}
# Function to divide the composition, inserted as a string, into a list using regular expressions
# lcc: list with the complete composition
def lcc(composition):
return re.findall('[A-Z][a-z]?|[0-9]+\.?[0-9]+|\.[0-9]+|[0-9]+', composition)
# The comp_dict function converts the list created by the lcc function into a dictionary
# Format: {Element1: composition1, ...}
# comp_dict: composition dictionary
# The comp_dict function converts the list created by the lcc function into a dictionary
# Format: {Element1: composition1, ...}
# comp_dict: composition dictionary
def comp_dict(composition):
# use lcc to parse the composition and transform it into a list
completelist = lcc(composition)
# od (organized dictionary) is the dictionary with the composition
er = False
erlist = []
od = {}
k = 0
for i, j in enumerate(completelist):
if j in atomic_mass:
# Insert 1 in case no number is given. If the next element is a number, it will be changed
od[j] = 1
current_element = j
elif re.search('[0-9]+\.?[0-9]+|\.[0-9]+|[0-9]+', j):
od[current_element] = float(j)
else:
print(f'{j} was not recognized. Check numbers and elements.')
return od
# Normalize the composition in atomic fraction
def atf_to_atp(cpaf):
Tmol = 0
# cpap: composition atomic percent
cpap = {}
for i in cpaf:
Tmol = Tmol + cpaf[i]
for i in cpaf:
cpap[i] = float(cpaf[i] / Tmol)
return cpap
# Function to calculate the VEC of the alloy
def FVEC(Cp):
VEC = 0
for i in Cp:
VEC = VEC + float(Cp[i]) * float(eledata.loc[eledata['Symbol'] == i, 'VEC'].item())
return VEC
# Function to calculate the mixing entropy of the alloy
def Mixentropy(Cp):
Sum = 0
for i in Cp:
Sum = Sum + float(Cp[i]) * np.log(float(Cp[i]))
DeltaS = -8.3144621 * Sum
return DeltaS
# Function to calculate the atomic size difference of the alloy
def AtmSizeDiff(Cp):
Sum = 0
rbar = 0
for i in Cp:
rbar = rbar + float(Cp[i]) * float(eledata.loc[eledata['Symbol'] == i, 'Radius'].item())
for i in Cp:
Sum = Sum + float(Cp[i]) * np.power(
(1 - float(eledata.loc[eledata['Symbol'] == i, 'Radius'].item()) / rbar), 2)
ASD = 100 * np.sqrt(Sum)
return ASD
# Function to calculate the electronegativity difference of the alloy
def ElecDiff(Cp):
Sum = 0
xbar = 0
for i in Cp:
xbar = xbar + float(Cp[i]) * float(eledata.loc[eledata['Symbol'] == i, 'PaElec'].item())
for i in Cp:
Sum = Sum + float(Cp[i]) * np.power((float(eledata.loc[eledata['Symbol'] == i, 'PaElec'].item()) - xbar), 2)
ED = np.sqrt(Sum)
return ED
# Function to return the mixing enthalpy between two elements E1 and E2
def EM(E1, E2):
Em = enthalpy_data[E1][(enthalpy_data['Symbol'] == E2)].values[0]
if math.isnan(Em):
Em = enthalpy_data[E2][(enthalpy_data['Symbol'] == E1)].values[0]
return Em
# Function to calculate the mixing enthalpy of the alloy
def EMix(Cp):
k = 0
Emix = 0
Ele = list(Cp.keys())
for i in range(len(Ele) - 1):
for j in range(len(Ele) - 1 - k):
Emix = Emix + 4 * float(EM(Ele[i], Ele[j + 1 + k])) * float(Cp[Ele[i]]) * float(Cp[Ele[j + 1 + k]])
k = k + 1
return Emix
# Format the composition to display the result
def format_comp(cp):
formated = ''
for i in cp:
# formated += i+str(cp[i])+' '
formated += i + "{:.{precision}f}".format(cp[i], precision=DECIMALS) + ' '
return formated
def check_exit():
e = input('Do you want to exit?(y/n): ')
if e.lower() == 'y':
return False
else:
return True
def print_results(normalized, conversion):
print(f'This composition in atomic fraction normalized is {conversion}')
print(f' VEC: {FVEC(normalized):.{DECIMALS}f} ')
print(f' Electronegativity difference: {ElecDiff(normalized):.{DECIMALS}f} ')
print(f' Atomic size difference: {AtmSizeDiff(normalized):.{DECIMALS}f} ')
print(f' \u0394Hmix: {EMix(normalized):.{DECIMALS}f} ')
print(f' \u0394Smix: {Mixentropy(normalized):.{DECIMALS}f} ')
def check_for_errors(cp):
error = False
c = []
symsearch = re.findall(',|-', cp)
if ',' in symsearch:
c.append('Use . instead of ,.')
error = True
if '-' in symsearch:
c.append('Do not use -.')
error = True
# use lcc to parse the composition and transform it into a list
completelist = lcc(cp)
for i in completelist:
if not re.search('[0-9]+\.?[0-9]+|\.[0-9]+|[0-9]+', i):
if i not in atomic_mass:
c.append(f'{i} was not recognized. Check numbers and elements.')
error = True
return error, c
# Main loop
i = True
while i == True:
print('What do you need? Type h for examples')
print('1 - Calculate CCAs/HEAs parameters')
print(f'2 - Set number of decimal places for displayed results (currently: {DECIMALS})')
print('h - help!')
print('e - Exit')
a = input('(1, 2, h, e): ')
if a == '1':
c = input('Insert composition in atomic ratio, fraction or percentage: ')
error, warning = check_for_errors(c)
if error:
for i in warning:
print(i)
i = check_exit()
print('--------------------------------------------------------------------')
continue
composition = comp_dict(c)
normalized = atf_to_atp(composition)
conversion = format_comp(normalized)
print_results(normalized, conversion)
i = check_exit()
elif a == '2':
DECIMALS = input('Insert number of decimal places: ')
elif a == 'h' or a == 'H':
print('Compositions must be written in the following manner:')
print('Metal one followed by its amount, metal two followed by its amount and so on.')
print('Do not use spaces or other characters.')
print('Example 1: Ti1Nb2 for an atomic ratio composition.')
print('Example 2: Mg30W70 for an atomic percent composition.')
print('Example 3: Mg10Nb10W10Ti10Fe10Mo10Mn10Al10Si10Ta10. There is no limit of elements.')
i = check_exit()
elif a == 'e' or a == 'E':
i = False
print('--------------------------------------------------------------------')