-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
284 lines (228 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import sys
from utils.config import Config
from optparse import OptionParser
import pprint
import pickle
import random
from utils.data_gen import get_anchor_gt, calc_rpn
from keras import backend as K
from keras.layers import Input
from keras.models import Model
from keras.optimizers import Adam
from net import losses
from keras.callbacks import TensorBoard
import numpy as np
import time
from keras.utils import generic_utils
import os
from utils.roi_helper import rpn_to_roi, calc_iou
import sys
if K.backend() == "tensorflow":
import tensorflow as tf
def write_log(callback, names, logs, batch_no):
for name, value in zip(names, logs):
tf.summary.scalar(name, value, batch_no)
if __name__ == "__main__":
# Python有递归次数限制,默认最大次数为1000
sys.setrecursionlimit(40000)
parser = OptionParser()
parser.add_option("-p", "--path", dest="train_path", help="Path to training data.")
parser.add_option("-o", "--parser", dest="parser", help="Parser to use. One of simple or pascal_voc",
default="pascal_voc")
parser.add_option("-n", "--num_rois", dest="num_rois", help="Number of RoIs to process at once.", default=32)
parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='vgg')
parser.add_option("--hf", dest="horizontal_flips", help="Augment with horizontal flips in training. (Default=false).", action="store_true", default=False)
parser.add_option("--vf", dest="vertical_flips", help="Augment with vertical flips in training. (Default=false).", action="store_true", default=False)
parser.add_option("--rot", "--rot_90", dest="rot_90", help="Augment with 90 degree rotations in training. (Default=false).",
action="store_true", default=False)
parser.add_option("--num_epochs", dest="num_epochs", help="Number of epochs.", default=2000)
parser.add_option("--config_filename", dest="config_filename",
help="Location to store all the metadata related to the training (to be used when testing).",
default="config.pickle")
parser.add_option("--output_weight_path", dest="output_weight_path", help="Output path for weights.", default='./logs/model_frcnn.h5')
parser.add_option("--input_weight_path", dest="input_weight_path", help="Input path for weights. If not specified, will try to load default weights provided by keras.")
options, args = parser.parse_args()
if not options.train_path:
parser.error('Error: path to training data must be specified. Pass --path to command line')
if options.parser == 'pascal_voc':
from utils.pascal_voc_parser import get_data
else:
raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'")
C = Config()
C.use_horizontal_flips = bool(options.horizontal_flips)
C.use_vertical_flips = bool(options.vertical_flips)
C.rot_90 = bool(options.rot_90)
C.model_path = options.output_weight_path
C.num_rois = options.num_rois
if options.network == "vgg":
from net import vgg as nn
else:
print('Not a valid model')
raise ValueError
if options.input_weight_path:
C.base_net_weights = options.input_weight_path
else:
C.base_net_weights = nn.get_weight_path()
all_imgs, classes_count, class_mapping = get_data(options.train_path)
#print(all_imgs)
# if 'bg' is not exist in classes_count, add it
if "bg" not in classes_count:
classes_count["bg"] = 0
class_mapping["bg"] = len(class_mapping)
C.class_mapping = class_mapping
inv_map = {v:k for k, v in class_mapping.items()}
print(inv_map)
print('Training images per class:')
pprint.pprint(classes_count)
print('Num classes (including bg) = {}'.format(len(classes_count)))
config_output_filename = options.config_filename
# save config file
with open(config_output_filename, "wb") as conf_f:
pickle.dump(C, conf_f)
print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(config_output_filename))
# shuffle all_images
random.shuffle(all_imgs)
num_imgs = len(all_imgs)
# seperate train date, test data and validate data
train_imgs = [s for s in all_imgs if s["imageset"] == "train"]
val_imgs = [s for s in all_imgs if s["imageset"] == "val"]
test_imgs = [s for s in all_imgs if s["imageset"] == "test"]
print('Num train samples {}'.format(len(train_imgs)))
print('Num val samples {}'.format(len(val_imgs)))
print('Num test samples {}'.format(len(test_imgs)))
data_gen_train = get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.backend(), mode="train")
data_gen_val = get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length, K.backend(), mode="val")
data_gen_test = get_anchor_gt(test_imgs, classes_count, C, nn.get_img_output_length, K.backend(), mode="test")
if K.backend() == "tensorflow":
input_shape_img = (None, None, 3)
else:
input_shape_img = (3, None, None)
img_input = Input(shape=(input_shape_img))
roi_input = Input(shape=(None, 4))
shared_layers = nn.nn_base(img_input, trainable=True)
num_anchors = len(C.anchor_box_ratios) * len(C.anchor_box_scales)
rpn = nn.rpn(shared_layers, num_anchors)
classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True)
model_rpn = Model(img_input, rpn[:2])
model_classifier = Model([img_input, roi_input], classifier)
model_all = Model([img_input, roi_input], rpn[:2] + classifier)
try:
print("loading weight from {}".format(C.base_net_weights))
model_rpn.load_weights(C.base_net_weights, by_name=True)
model_classifier.load_weights(C.base_net_weights, by_name=True)
except:
print("Could not load model weights.")
sys.exit(1)
optimizer_rpn = Adam(lr=1e-5)
optimizer_classifer = Adam(lr=1e-5)
model_rpn.compile(optimizer=optimizer_rpn, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)])
model_classifier.compile(optimizer=optimizer_classifer, loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count) - 1)], metrics={"dense_class_{}".format(len(classes_count)) : "accuracy"})
model_all.compile(optimizer="sgd", loss="mae")
log_path = "./logs"
if not os.path.isdir(log_path):
os.mkdir(log_path)
callback = TensorBoard(log_path)
callback.set_model(model_all)
epoch_length = 1000
num_epochs = int(options.num_epochs)
iter_num = 0
train_step = 0
losses = np.zeros((epoch_length, 5))
rpn_accuracy_rpn_monitor = []
rpn_accuracy_for_epoch = []
start_time = time.time()
best_loss = np.inf
class_mapping_inv = {v:k for k, v in class_mapping.items()}
print("start training:")
for epoch_num in range(num_epochs):
progbar = generic_utils.Progbar(epoch_length)
print("Epoch {}/{}".format(epoch_num + 1, num_epochs))
while True:
if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose:
mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor)
rpn_accuracy_rpn_monitor = []
print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length))
if mean_overlapping_bboxes == 0:
print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.')
X, Y, img_data = next(data_gen_train)
loss_rpn = model_rpn.train_on_batch(X, Y)
write_log(callback, ['rpn_cls_loss', 'rpn_reg_loss'], loss_rpn, train_step)
P_rpn = model_rpn.predict_on_batch(X)
R = rpn_to_roi(P_rpn[0], P_rpn[1], C, K.backend(), use_regr=True, overlap_thresh=0.7, max_boxes=300)
X2, Y1, Y2, IouS = calc_iou(R, img_data, C, class_mapping)
if X2 is None:
rpn_accuracy_rpn_monitor.append(0)
rpn_accuracy_for_epoch.append(0)
continue
neg_samples = np.where(Y1[0, :, -1] == 1)
pos_samples = np.where(Y1[0, :, -1] == 0)
if len(neg_samples) > 0:
neg_samples = neg_samples[0]
else:
neg_samples = []
if len(pos_samples) > 0:
pos_samples = pos_samples[0]
else:
pos_samples = []
rpn_accuracy_rpn_monitor.append(len(pos_samples))
rpn_accuracy_for_epoch.append(len(pos_samples))
if C.num_rois > 1:
if len(pos_samples) < C.num_rois//2:
selected_pos_samples = pos_samples.tolist()
else:
selected_pos_samples = np.random.choice(pos_samples, C.num_rois//2, replace=False).tolist()
try:
selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist()
except:
selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist()
sel_samples = selected_pos_samples + selected_neg_samples
else:
selected_pos_samples = pos_samples.tolist()
selected_neg_samples = neg_samples.tolist()
if np.random.randint(0, 2):
sel_samples = random.choice(neg_samples)
else:
sel_samples = random.choice(pos_samples)
loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]])
write_log(callback, ['detection_cls_loss', 'detection_reg_loss', 'detection_acc'], loss_class, train_step)
train_step += 1
losses[iter_num, 0] = loss_rpn[1]
losses[iter_num, 1] = loss_rpn[2]
losses[iter_num, 2] = loss_class[1]
losses[iter_num, 3] = loss_class[2]
losses[iter_num, 4] = loss_class[3]
iter_num += 1
progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])),
('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))])
if iter_num == epoch_length:
loss_rpn_cls = np.mean(losses[:, 0])
loss_rpn_regr = np.mean(losses[:, 1])
loss_class_cls = np.mean(losses[:, 2])
loss_class_regr = np.mean(losses[:, 3])
class_acc = np.mean(losses[:, 4])
mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch)
rpn_accuracy_for_epoch = []
if C.verbose:
print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes))
print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc))
print('Loss RPN classifier: {}'.format(loss_rpn_cls))
print('Loss RPN regression: {}'.format(loss_rpn_regr))
print('Loss Detector classifier: {}'.format(loss_class_cls))
print('Loss Detector regression: {}'.format(loss_class_regr))
print('Elapsed time: {}'.format(time.time() - start_time))
curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr
iter_num = 0
start_time = time.time()
write_log(callback,
['Elapsed_time', 'mean_overlapping_bboxes', 'mean_rpn_cls_loss', 'mean_rpn_reg_loss',
'mean_detection_cls_loss', 'mean_detection_reg_loss', 'mean_detection_acc', 'total_loss'],
[time.time() - start_time, mean_overlapping_bboxes, loss_rpn_cls, loss_rpn_regr,
loss_class_cls, loss_class_regr, class_acc, curr_loss],
epoch_num)
if curr_loss < best_loss:
if C.verbose:
print('Total loss decreased from {} to {}, saving weights'.format(best_loss,curr_loss))
best_loss = curr_loss
model_all.save_weights(C.model_path)
break
print('Training complete, exiting.')