forked from pythonlessons/TensorFlow-YOLO-v3-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_video.py
71 lines (56 loc) · 2.39 KB
/
detect_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Yolo v3 video detection
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import tensorflow as tf
import sys
import cv2
from yolo_v3 import Yolo_v3
from utils import load_images, load_class_names, draw_boxes, draw_frame
_MODEL_SIZE = (416, 416)
_CLASS_NAMES_FILE = 'coco.names'
_MAX_OUTPUT_SIZE = 50
detection_result = {}
def main(iou_threshold, confidence_threshold, input_names):
global detection_result
class_names = load_class_names(_CLASS_NAMES_FILE)
n_classes = len(class_names)
model = Yolo_v3(n_classes=n_classes, model_size=_MODEL_SIZE,
max_output_size=_MAX_OUTPUT_SIZE,
iou_threshold=iou_threshold,
confidence_threshold=confidence_threshold)
inputs = tf.placeholder(tf.float32, [1, *_MODEL_SIZE, 3])
detections = model(inputs, training=False)
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
saver.restore(sess, './weights/model.ckpt')
win_name = 'Video detection'
cv2.namedWindow(win_name)
cap = cv2.VideoCapture(input_names)
frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
fps = cap.get(cv2.CAP_PROP_FPS)
if not os.path.exists('detections'):
os.mkdir('detections')
head, tail = os.path.split(input_names)
name = './detections/'+tail[:-4]+'_yolo.mp4'
out = cv2.VideoWriter(name, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))
try:
print("Show video")
while(cap.isOpened()):
ret, frame = cap.read()
if not ret:
break
resized_frame = cv2.resize(frame, dsize=_MODEL_SIZE[::-1], interpolation=cv2.INTER_NEAREST)
detection_result = sess.run(detections, feed_dict={inputs: [resized_frame]})
draw_frame(frame, frame_size, detection_result, class_names, _MODEL_SIZE)
if ret == True:
cv2.imshow(win_name, frame)
out.write(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
cv2.destroyAllWindows()
cap.release()
print('Detections have been saved successfully.')
if __name__ == '__main__':
main(0.5, 0.5, "input/driving.mp4")