-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslam.py
executable file
·112 lines (83 loc) · 2.51 KB
/
slam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import cv2
import pygame
import time
from display import Display
from extractor import Extractor
import numpy as np
W = 1920//2
H = 1080//2
##pygame.init()
##screen = pygame.display.set_mode((W,H))
#surface = pygame.surface(W,H).convert()
#cv2.namedWindow('image',cv2.WINDOW_NORMAL)
disp =Display(W,H)
# fe = Extractor()
#orb = cv2.ORB_create()
#print(dir(orb))
#class FeatureExtractor(object):
# """docstring for FeatureExtractor"""
# put image into small grid
# GX = 16
# GY = 16
# def __init__(self):
# self.orb =cv2.ORB_create(100)
# def extract(self, img):
# feats = cv2.goodFeaturesToTrack(np.mean(img, axis=2).astype(np.uint8), 3000, qualityLevel=0.01, minDistance=3)
# kps = [cv2.KeyPoint(x=f[0][0], y=f[0][1],_size =20) for f in feats]
# des =self.orb.compute(img,kps)
# if self.last is not None:
# matches =self.bf.match(des, self.last['kps'])
# print(matches)
# self.last ={'kps':kps,'des':des}
# return kps, des
# run detect in grid
# sy = img.shape[0]//self.GY
# sx = img.shape[1]//self.GX
# for ry in range(0,img.shape[0],sy):
# for rx in range(0,img.shape[1],sx):
# img_chunk =img[ry:ry+sy, rx:rx+sx]
# kp, des = self.orb.detect(img_chunk ,None)
# for p in kp:
# print(p)
fe = Extractor()
def process_frame(img):
img =cv2.resize(img,(W,H))
matches = fe.extract(img)
print("%d matches" % (len(matches)))
for pt1, pt2 in matches:
u1,v1 = map(lambda x: int(round(x)), pt1)
u2,v2 = map(lambda x: int(round(x)), pt2)
cv2.circle(img, (u1, v1), color=(0,255,0), radius=3)
cv2.line(img, (u1, v1), (u2, v2), color=(255,0,0))
# kps, des =fe.extract(img)
# for i in kps:
# u,v=map(lambda x: int(round(x)),i.pt)
# cv2.circle(img,(u,v),color=(0,255,0),radius =3)
disp.paint(img)
# def process_frame(img):
# matches = fe.extract(img)
# print("%d matches" % (len(matches)))
# for pt1, pt2 in matches:
# u1,v1 = map(lambda x: int(round(x)),pt1)
# u2,v2 = map(lambda x: int(round(x)),pt2)
# cv2.circle(img, (u1, v1), color=(0,255,0), radius=3)
# cv2.line(img, (u1, v1), (u2, v2), color=(255,0,0))
# disp.paint(img)
## surf =pygame.surfarray.make_surface(img.swapaxes(0,1)).convert()
## print(surf)
## screen.blit(surf,(0,0))
## pygame.display.update()
## time.sleep(1)
# cv2.imshow('image',img)
# cv2.waitKey()
## print(img.shape)
if __name__=="__main__":
cap = cv2.VideoCapture("bu.mp4")
while cap.isOpened():
ret, frame =cap. read()
if ret == True:
process_frame(frame)
else:
break