-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_sentiment.py
49 lines (37 loc) · 1.2 KB
/
make_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import pandas as pd
import multiprocessing as mp
CSV_FILES = [
"cnn_articles-2015-6805.csv",
"cnn_articles-2016-1610.csv",
"cnn_articles-2017-3555.csv",
"cnn_articles-2018-7011.csv",
"cnn_articles-2019-2682.csv",
"cnn_articles-2020-5418.csv",
"cnn_articles-2021-8194.csv",
"cnn_articles-2022-3264.csv"
]
ORIGINAL_SAMPLES_DIR = "outputs/"
SENTIMENTS_DIR = "outputs/sentiments/"
TARGET_COLUMN = "bodyContent"
analyzer = SentimentIntensityAnalyzer()
count = [0]
def produce_sentiment(text):
print(f"Processing row {count[0]}")
count[0] += 1
return analyzer.polarity_scores(text)
def analyze_one_file(filename):
df = pd.read_csv(ORIGINAL_SAMPLES_DIR + filename)
p = mp.Pool(mp.cpu_count())
sentimentColumns = p.map(produce_sentiment, df[TARGET_COLUMN])
df = pd.concat([df, pd.DataFrame(sentimentColumns)], axis=1)
df.to_csv(f"{SENTIMENTS_DIR}{filename[:-4]}-sentiments.csv")
def run():
for filename in CSV_FILES:
print(f"STARTING: {filename}\n")
analyze_one_file(filename)
print(f"DONE: {filename}\n")
def main():
run()
if __name__ == "__main__":
main()