forked from chack1920/tensorflow_face_recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalign_dataset.py
executable file
·137 lines (128 loc) · 6.82 KB
/
align_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Performs face alignment and stores face thumbnails in the output directory."""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy import misc
import sys
import os
import argparse
import random
import align_dlib
import facenet
def main(args):
align = align_dlib.AlignDlib(os.path.expanduser(args.dlib_face_predictor))
landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE
output_dir = os.path.expanduser(args.output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Store some git revision info in a text file in the log directory
src_path,_ = os.path.split(os.path.realpath(__file__))
facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
dataset = facenet.get_dataset(args.input_dir)
random.shuffle(dataset)
# Scale the image such that the face fills the frame when cropped to crop_size
scale = float(args.face_size) / args.image_size
nrof_images_total = 0
nrof_prealigned_images = 0
nrof_successfully_aligned = 0
for cls in dataset:
output_class_dir = os.path.join(output_dir, cls.name)
if not os.path.exists(output_class_dir):
os.makedirs(output_class_dir)
random.shuffle(cls.image_paths)
for image_path in cls.image_paths:
nrof_images_total += 1
filename = os.path.splitext(os.path.split(image_path)[1])[0]
output_filename = os.path.join(output_class_dir, filename+'.png')
if not os.path.exists(output_filename):
try:
img = misc.imread(image_path)
except (IOError, ValueError, IndexError) as e:
errorMessage = '{}: {}'.format(image_path, e)
print(errorMessage)
else:
if img.ndim == 2:
img = facenet.to_rgb(img)
if args.use_center_crop:
scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear')
sz1 = scaled.shape[1]/2
sz2 = args.image_size/2
aligned = scaled[(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:]
else:
aligned = align.align(args.image_size, img, landmarkIndices=landmarkIndices,
skipMulti=False, scale=scale)
if aligned is not None:
print(image_path)
nrof_successfully_aligned += 1
misc.imsave(output_filename, aligned)
elif args.prealigned_dir:
# Face detection failed. Use center crop from pre-aligned dataset
class_name = os.path.split(output_class_dir)[1]
image_path_without_ext = os.path.join(os.path.expanduser(args.prealigned_dir),
class_name, filename)
# Find the extension of the image
exts = ('jpg', 'png')
for ext in exts:
temp_path = image_path_without_ext + '.' + ext
image_path = ''
if os.path.exists(temp_path):
image_path = temp_path
break
try:
img = misc.imread(image_path)
except (IOError, ValueError, IndexError) as e:
errorMessage = '{}: {}'.format(image_path, e)
print(errorMessage)
else:
scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear')
sz1 = scaled.shape[1]/2
sz2 = args.image_size/2
cropped = scaled[(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:]
print(image_path)
nrof_prealigned_images += 1
misc.imsave(output_filename, cropped)
else:
print('Unable to align "%s"' % image_path)
print('Total number of images: %d' % nrof_images_total)
print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
print('Number of pre-aligned images: %d' % nrof_prealigned_images)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('input_dir', type=str, help='Directory with unaligned images.')
parser.add_argument('output_dir', type=str, help='Directory with aligned face thumbnails.')
parser.add_argument('--dlib_face_predictor', type=str,
help='File containing the dlib face predictor.', default='../data/shape_predictor_68_face_landmarks.dat')
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=110)
parser.add_argument('--face_size', type=int,
help='Size of the face thumbnail (height, width) in pixels.', default=96)
parser.add_argument('--use_center_crop',
help='Use the center crop of the original image after scaling the image using prealigned_scale.', action='store_true')
parser.add_argument('--prealigned_dir', type=str,
help='Replace image with a pre-aligned version when face detection fails.', default='')
parser.add_argument('--prealigned_scale', type=float,
help='The amount of scaling to apply to prealigned images before taking the center crop.', default=0.87)
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))