-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_data.py
44 lines (38 loc) · 1.96 KB
/
mnist_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from tensorflow.keras.datasets import mnist
import numpy as np
class MNISTDataProcessor:
def __init__(self):
(self.x_train_raw, self.y_train), (self.x_test_raw, self.y_test) = mnist.load_data()
self.num_train = self.x_train_raw.shape[0]
self.num_test = self.x_test_raw.shape[0]
self.x_train_ft = np.fft.fftshift(np.fft.fft2(self.x_train_raw), axes=(1, 2))
self.x_test_ft = np.fft.fftshift(np.fft.fft2(self.x_test_raw), axes=(1, 2))
def norm_inputs(self, inputs, feature_axis=1):
# if feature_axis == 1:
# n_features, n_examples = inputs.shape
# elif feature_axis == 0:
# n_examples, n_features = inputs.shape
# for i in range(n_features):
# # this is normalization along the features?
# l1_norm = np.mean(np.abs(inputs[i, :]))
# inputs[i, :] /= l1_norm
# return inputs
if feature_axis == 1:
n_examples, n_features = inputs.shape
elif feature_axis == 0:
n_features, n_examples = inputs.shape
# return inputs / np.linalg.norm(inputs,
# axis=feature_axis).reshape(-1,1) * 16
return inputs / np.linalg.norm(inputs,
ord=1,
axis=feature_axis).reshape(-1,1)
# we use fourier orders for data processing such that the required ports number is less.
def fourier(self, freq_radius):
min_r, max_r = 14 - freq_radius, 14 + freq_radius
x_train_ft = self.x_train_ft[:, min_r:max_r, min_r:max_r]
x_test_ft = self.x_test_ft[:, min_r:max_r, min_r:max_r]
x_train=self.norm_inputs(x_train_ft.reshape((self.num_train, -1)))
y_train=np.eye(10)[self.y_train]
x_test=self.norm_inputs(x_test_ft.reshape((self.num_test, -1)))
y_test=np.eye(10)[self.y_test]
return (np.array(x_train), np.array(y_train), np.array(x_test), np.array(y_test))