This repository has been archived by the owner on Mar 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtrain.py
executable file
·193 lines (158 loc) · 6.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from hashlib import sha1
import logging
import os
from pathlib import Path
import typing as tp
import sys
from dora import hydra_main, to_absolute_path
import flashy
import hydra
import mne
from omegaconf import OmegaConf
import torch
from . import dataset as dset
from .models import ConvRNN, SimpleConv, DeepMel
from .solver import Solver
logger = logging.getLogger(__name__)
def model_hash(model: torch.nn.Module) -> str:
hasher = sha1()
for p in model.parameters():
hasher.update(p.data.cpu().numpy().tobytes())
return hasher.hexdigest()
def get_solver(args: tp.Any, training=True):
# Dataset and loading
assert args.optim.batch_size % flashy.distrib.world_size() == 0
logger.debug("Building datasets")
args.optim.batch_size //= flashy.distrib.world_size()
if args.num_workers is None:
args.num_workers = min(10, 2 * args.optim.batch_size)
assert args.dset.sample_rate is not None, "sample rate <= 1200 required"
kwargs: tp.Dict[str, tp.Any]
kwargs = OmegaConf.to_container(args.dset, resolve=True) # type: ignore
selections = [args.selections[x] for x in args.dset.selections]
kwargs["selections"] = selections
if args.optim.loss == "clip":
kwargs['extra_test_features'].append("WordHash")
dsets = dset.get_datasets(
num_workers=args.num_workers, progress=True,
**kwargs,
)
if args.download_only:
sys.exit(0)
meg_dimension = dsets.train[0].meg.shape[0]
used_features = dsets.train.datasets[0].features
if args.task.type == 'decode':
in_channels = dict(meg=meg_dimension)
chout = used_features.output_dimension
elif args.task.type == 'encode':
in_channels = dict(meg=meg_dimension, features=used_features.dimension)
chout = in_channels["meg"]
# Brain module creation
if args.override_n_subjects_model is not None:
n_subjects = args.override_n_subjects_model
else:
n_subjects = 1 + max(dset.recording.subject_index for dset in dsets.train.datasets)
assert n_subjects > 0
torch.manual_seed(args.seed)
model_chout = chout
if args.feature_model_name is not None:
if args.task.type == "decode":
model_chout = args.feature_model_params.n_out_channels
if args.model_name == "convrnn":
model = ConvRNN(in_channels=in_channels, out_channels=model_chout,
n_subjects=n_subjects, **args.convrnn)
elif args.model_name == "simpleconv":
model = SimpleConv(in_channels=in_channels, out_channels=model_chout,
n_subjects=n_subjects, **args.simpleconv)
else:
raise ValueError(f"Invalid model {args.model}")
model.to(args.device)
# Feature model creation
if args.feature_model_name is not None:
feature_model_params = args.feature_model_params
if args.feature_model_name == "deep_mel":
feature_model = DeepMel(**feature_model_params, n_in_channels=chout)
else:
raise ValueError(f"Invalid feature model {args.feature_model_name}.")
if "device" in feature_model_params and feature_model_params.device:
# Option to have the brain and speech modules on different GPUs
feature_model.to(feature_model_params.device)
else:
feature_model.to(args.device)
logger.debug("Feature model: %r", feature_model)
logger.info("Feature model hash: %s", model_hash(feature_model))
else:
feature_model = None
logger.debug('Model: %r', model)
logger.info('Model hash: %s', model_hash(model))
optimizer = None
if training:
# optimizer
optargs = args.optim
params = list(model.parameters())
if feature_model is not None:
params += list(feature_model.parameters())
if optargs.name == "adam":
optimizer = torch.optim.Adam(params, lr=optargs.lr, betas=(0.9, optargs.beta2))
else:
raise ValueError(f'Invalid optimizer {args.optim}')
return Solver(
args=args,
datasets=dsets,
model=model,
feature_model=feature_model,
optimizer=optimizer)
def run(args: tp.Any) -> float:
level = logging.DEBUG if args.verbose else logging.INFO
flashy.setup_logging(level=level)
mne.set_log_level(False)
if args.verbose:
logging.getLogger("bm").setLevel(logging.DEBUG)
logging.getLogger("dora").setLevel(logging.DEBUG)
flashy.distrib.init()
solver = get_solver(args)
# Construct Solver
if args.show:
logger.info(solver.model)
mb = sum(p.numel() for p in solver.model.parameters()) * 4 / 2**20
logger.info('Size: %.1f MB', mb)
return 0.0
return solver.train()
def override_args_(args: tp.Any):
"""Override hydra config with simple code logic that can't be described in a config.yaml file.
TODO: For every hydra param we change, we should set a new param in the config (so original
param will stay the same). This provides better backward compatibility.
"""
for selection in args.selections:
events_filter = getattr(selection, "events_filter", None)
if events_filter is not None:
# TODO next line is BUGGY (and untested)
event_filter_key_to_value = dict(
hydra.compose(config_name=args.events_filter_file)) # type: ignore
if events_filter in event_filter_key_to_value: # should not happen by default with None
selection.events_filter = event_filter_key_to_value[events_filter]
if args.cache is not None:
args.cache = to_absolute_path(args.cache)
@hydra_main(config_name="config", config_path="conf", version_base="1.1")
def main(args: tp.Any) -> float:
override_args_(args)
global __file__ # pylint: disable=global-statement,redefined-builtin
# Fix bug when using multiprocessing with Hydra
__file__ = hydra.utils.to_absolute_path(__file__)
from . import env # we need this here otherwise submitit pickle does crazy stuff.
# Updating paths in config that should stay relative to the original working dir
with env.temporary_from_args(args):
torch.set_num_threads(1)
logger.info(f"For logs, checkpoints and samples, check {os.getcwd()}.")
logger.info(f"Caching intermediate data under {args.cache}.")
logger.debug(args)
return run(args)
if '_BM_TEST_PATH' in os.environ:
main.dora.dir = Path(os.environ['_BM_TEST_PATH'])
if __name__ == "__main__":
main()