diff --git a/exercises/practice/matching-brackets/.docs/instructions.md b/exercises/practice/matching-brackets/.docs/instructions.md index 544daa96..ea170842 100644 --- a/exercises/practice/matching-brackets/.docs/instructions.md +++ b/exercises/practice/matching-brackets/.docs/instructions.md @@ -1,4 +1,5 @@ # Instructions Given a string containing brackets `[]`, braces `{}`, parentheses `()`, or any combination thereof, verify that any and all pairs are matched and nested correctly. -The string may also contain other characters, which for the purposes of this exercise should be ignored. +Any other characters should be ignored. +For example, `"{what is (42)}?"` is balanced and `"[text}"` is not. diff --git a/exercises/practice/matching-brackets/.docs/introduction.md b/exercises/practice/matching-brackets/.docs/introduction.md new file mode 100644 index 00000000..0618221b --- /dev/null +++ b/exercises/practice/matching-brackets/.docs/introduction.md @@ -0,0 +1,8 @@ +# Introduction + +You're given the opportunity to write software for the Bracketeer™, an ancient but powerful mainframe. +The software that runs on it is written in a proprietary language. +Much of its syntax is familiar, but you notice _lots_ of brackets, braces and parentheses. +Despite the Bracketeer™ being powerful, it lacks flexibility. +If the source code has any unbalanced brackets, braces or parentheses, the Bracketeer™ crashes and must be rebooted. +To avoid such a scenario, you start writing code that can verify that brackets, braces, and parentheses are balanced before attempting to run it on the Bracketeer™. diff --git a/exercises/practice/say/.docs/instructions.md b/exercises/practice/say/.docs/instructions.md index fb4a6dfb..ad3d3477 100644 --- a/exercises/practice/say/.docs/instructions.md +++ b/exercises/practice/say/.docs/instructions.md @@ -30,8 +30,6 @@ Implement breaking a number up into chunks of thousands. So `1234567890` should yield a list like 1, 234, 567, and 890, while the far simpler `1000` should yield just 1 and 0. -The program must also report any values that are out of range. - ## Step 3 Now handle inserting the appropriate scale word between those chunks. diff --git a/exercises/practice/space-age/.docs/instructions.md b/exercises/practice/space-age/.docs/instructions.md index fe938cc0..f23b5e2c 100644 --- a/exercises/practice/space-age/.docs/instructions.md +++ b/exercises/practice/space-age/.docs/instructions.md @@ -1,25 +1,28 @@ # Instructions -Given an age in seconds, calculate how old someone would be on: +Given an age in seconds, calculate how old someone would be on a planet in our Solar System. -- Mercury: orbital period 0.2408467 Earth years -- Venus: orbital period 0.61519726 Earth years -- Earth: orbital period 1.0 Earth years, 365.25 Earth days, or 31557600 seconds -- Mars: orbital period 1.8808158 Earth years -- Jupiter: orbital period 11.862615 Earth years -- Saturn: orbital period 29.447498 Earth years -- Uranus: orbital period 84.016846 Earth years -- Neptune: orbital period 164.79132 Earth years +One Earth year equals 365.25 Earth days, or 31,557,600 seconds. +If you were told someone was 1,000,000,000 seconds old, their age would be 31.69 Earth-years. -So if you were told someone were 1,000,000,000 seconds old, you should -be able to say that they're 31.69 Earth-years old. +For the other planets, you have to account for their orbital period in Earth Years: -If you're wondering why Pluto didn't make the cut, go watch [this YouTube video][pluto-video]. +| Planet | Orbital period in Earth Years | +| ------- | ----------------------------- | +| Mercury | 0.2408467 | +| Venus | 0.61519726 | +| Earth | 1.0 | +| Mars | 1.8808158 | +| Jupiter | 11.862615 | +| Saturn | 29.447498 | +| Uranus | 84.016846 | +| Neptune | 164.79132 | -Note: The actual length of one complete orbit of the Earth around the sun is closer to 365.256 days (1 sidereal year). +~~~~exercism/note +The actual length of one complete orbit of the Earth around the sun is closer to 365.256 days (1 sidereal year). The Gregorian calendar has, on average, 365.2425 days. While not entirely accurate, 365.25 is the value used in this exercise. See [Year on Wikipedia][year] for more ways to measure a year. -[pluto-video]: https://www.youtube.com/watch?v=Z_2gbGXzFbs [year]: https://en.wikipedia.org/wiki/Year#Summary +~~~~ diff --git a/exercises/practice/space-age/.docs/introduction.md b/exercises/practice/space-age/.docs/introduction.md new file mode 100644 index 00000000..014d7885 --- /dev/null +++ b/exercises/practice/space-age/.docs/introduction.md @@ -0,0 +1,20 @@ +# Introduction + +The year is 2525 and you've just embarked on a journey to visit all planets in the Solar System (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune). +The first stop is Mercury, where customs require you to fill out a form (bureaucracy is apparently _not_ Earth-specific). +As you hand over the form to the customs officer, they scrutinize it and frown. +"Do you _really_ expect me to believe you're just 50 years old? +You must be closer to 200 years old!" + +Amused, you wait for the customs officer to start laughing, but they appear to be dead serious. +You realize that you've entered your age in _Earth years_, but the officer expected it in _Mercury years_! +As Mercury's orbital period around the sun is significantly shorter than Earth, you're actually a lot older in Mercury years. +After some quick calculations, you're able to provide your age in Mercury Years. +The customs officer smiles, satisfied, and waves you through. +You make a mental note to pre-calculate your planet-specific age _before_ future customs checks, to avoid such mix-ups. + +~~~~exercism/note +If you're wondering why Pluto didn't make the cut, go watch [this YouTube video][pluto-video]. + +[pluto-video]: https://www.youtube.com/watch?v=Z_2gbGXzFbs +~~~~