-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdatasets_stats.py
55 lines (46 loc) · 1.79 KB
/
datasets_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torchaudio
import multiprocessing
from glob import glob
from tqdm import tqdm
from supervoice.model_style import _convert_to_continuous_f0
def get_stats(path):
base_path = path[:-4]
style = torch.load(base_path + ".style.pt")
style = _convert_to_continuous_f0(style)
style = (style - style.mean()) / style.std()
return (style.mean().item(), style.std().item(), style.max().item(), style.min().item())
def main():
# Enumerate files
print("Enumerating files...")
# files = []
# files += glob("datasets/libritts-prepared/*/*.wav")
# files += glob("datasets/vctk-prepared/*/*.wav")
files_eval = []
files_eval += glob("datasets/eval-prepared/*/*.wav")
ops = [("list_test", files_eval)]
# Calculate duration
for op in ops:
print(f"Calculating stats for {op[0]}")
stats = []
with multiprocessing.Manager() as manager:
files = manager.list(op[1])
with multiprocessing.Pool(processes=32) as pool:
for result in tqdm(pool.imap_unordered(get_stats, files, chunksize=32), total=len(files)):
stats.append(result)
# Extract max and min
max_mean = max([x[0] for x in stats])
min_mean = min([x[0] for x in stats])
max_std = max([x[1] for x in stats])
min_std = min([x[1] for x in stats])
max_max = max([x[2] for x in stats])
min_max = min([x[2] for x in stats])
max_min = max([x[3] for x in stats])
min_min = min([x[3] for x in stats])
# Log
print("Mean: ", max_mean, " - ", min_mean)
print("Std: ", max_std, " - ", min_std)
print("Max: ", max_max, " - ", min_max)
print("Min: ", max_min, " - ", min_min)
if __name__ == "__main__":
main()