-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
283 lines (245 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
# Base
import itertools
from glob import glob
from tqdm import tqdm
import time
from contextlib import nullcontext
from pathlib import Path
import shutil
import math
import random
import random
# ML
import torch
import torch.nn.functional as F
from torch.utils.data import DistributedSampler, DataLoader
import pandas
import wandb
from einops import rearrange, reduce, repeat
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed
import schedulefree
from torch.profiler import profile, record_function, ProfilerActivity
# Local
from supervoice_valle import SupervoceNARModel, Tokenizer
from train.dataset import load_sampler, create_async_loader
# Train parameters
train_experiment = "valle-35"
train_project="supervoice-valle"
train_auto_resume = True
# We speculate that original paper has about 6k tokens per GPU
# 6k tokens is routhly 3 rows, because a single row is a 1500-2500 tokens
# We have MUCH faster GPUs and therefore instead of gradient accumulation,
# we increase batch size 4x and reduce number of gradients to just 4x
train_grad_accum_every = 2
train_batch_size = 8
# We speculate that learning rate is given for all GPUs, so we divide it by number of GPUs
train_lr_start = 1e-12
train_lr_max = 5e-4
train_steps = 600000
train_warmup_steps = 32000 # I am using faster warmup - it is more natural for me after working on voicebox
train_schedule_free = False
train_loader_workers = 32
train_log_every = 1
train_save_every = 1000
train_watch_every = 1000
train_evaluate_every = 200
train_evaluate_batches = 10
train_mixed_precision = "fp16" # "bf16" or "fp16" or None
train_clip_grad_norm = 1 # Common reproductions are using 100 or 1
train_compile = False
# Train
def main():
# Prepare accelerator
ddp_kwargs = DistributedDataParallelKwargs()
accelerator = Accelerator(log_with="wandb", kwargs_handlers=[ddp_kwargs], gradient_accumulation_steps = train_grad_accum_every, mixed_precision=train_mixed_precision)
device = accelerator.device
output_dir = Path("./output")
output_dir.mkdir(parents=True, exist_ok=True)
dtype = torch.float16 if train_mixed_precision == "fp16" else (torch.bfloat16 if train_mixed_precision == "bf16" else torch.float32)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
lr_start = train_lr_start * accelerator.num_processes
lr_max = train_lr_max * accelerator.num_processes
random_suffix = ''.join(random.choices('0123456789abcdef', k=6))
run_id = f"{train_experiment}-{random_suffix}"
# Prepare dataset
accelerator.print("Loading dataset...")
tokenizer = Tokenizer("./tokenizer_text.model")
# train_sampler = load_sampler("./external_datasets/libriheavy/libriheavy_cuts_medium.jsonl.gz", "./external_datasets/libriheavy-medium-encodec/", train_batch_size, tokenizer)
# train_sampler = load_sampler("./external_datasets/libriheavy/libriheavy_cuts_large.jsonl.gz", "./external_datasets/libriheavy-large-encodec/", train_batch_size, tokenizer)
train_sampler = load_sampler("./external_datasets/libriheavy/libriheavy_cuts_small.jsonl.gz", "./external_datasets/libriheavy-encodec/", train_batch_size, tokenizer)
train_loader = create_async_loader(train_sampler, num_workers = train_loader_workers)
train_cycle = cycle(train_loader)
# Model
accelerator.print("Loading model...")
step = 1
model = SupervoceNARModel().to(device)
raw_model = model
wd_params, no_wd_params = [], []
for param in model.parameters():
param_list = no_wd_params if param.ndim < 2 else wd_params
param_list.append(param)
if not train_schedule_free:
optim = torch.optim.AdamW([{'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}], train_lr_start, betas=[0.9, 0.95],weight_decay=0.01, eps=1e-6)
else:
optim = schedulefree.AdamWScheduleFree([{'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}], lr=train_lr_max, betas=[0.9, 0.95],weight_decay=0.01, eps=1e-6)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max = train_steps)
if train_compile:
model = torch.compile(model, mode="reduce-overhead")
# Checkpoint
checkpoint = None
if train_auto_resume and (output_dir / f"{train_experiment}.pt").exists():
checkpoint = torch.load(str(output_dir / f"{train_experiment}.pt"), map_location="cpu")
step = checkpoint['step']
run_id = checkpoint['run_id']
# Accelerate
if not train_schedule_free:
model, optim = accelerator.prepare(model, optim)
else:
model = accelerator.prepare(model)
hps = {
"train_lr_start": train_lr_start,
"train_lr_max": train_lr_max,
"grad_accum_every": train_grad_accum_every,
"steps": train_steps,
"warmup_steps": train_warmup_steps,
"mixed_precision": train_mixed_precision,
"clip_grad_norm": train_clip_grad_norm,
}
accelerator.init_trackers(train_project, config=hps, init_kwargs={"wandb":{"name":run_id, "id": run_id, "resume": "allow"}})
if accelerator.is_main_process:
wandb.watch(model, log="all", log_freq=train_watch_every * train_grad_accum_every)
# Save
def save():
if train_schedule_free:
optim.eval()
# Save step checkpoint
fname = str(output_dir / f"{train_experiment}.pt")
fname_step = str(output_dir / f"{train_experiment}.{step}.pt")
torch.save({
# Model
'model': raw_model.state_dict(),
# Optimizer
'optimizer': optim.state_dict(),
'scheduler': scheduler.state_dict(),
'scaler': accelerator.scaler.state_dict(),
'step': step,
'run_id': run_id,
}, fname_step)
# Overwrite main checkpoint
shutil.copyfile(fname_step, fname)
# Load
if checkpoint is not None:
raw_model.load_state_dict(checkpoint['model'])
optim.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
accelerator.scaler.load_state_dict(checkpoint['scaler'])
accelerator. print(f'Loaded at #{step}')
# Train step
def train_step():
model.train()
if train_schedule_free:
optim.train()
# Update LR
if not train_schedule_free:
if step < train_warmup_steps:
lr = (lr_start + ((lr_max - lr_start) * step) / train_warmup_steps)
for param_group in optim.param_groups:
param_group['lr'] = lr
lr = lr / accelerator.num_processes
else:
scheduler.step()
lr = scheduler.get_last_lr()[0] / accelerator.num_processes
else:
lr = lr_max / accelerator.num_processes
# Load batch
for _ in range(train_grad_accum_every):
with accelerator.accumulate(model):
with accelerator.autocast():
# Load batch
audio, text = next(train_cycle)
# Split audio
texts = []
audio_full = []
audio_partial = []
audio_codecs = []
for B in range(len(audio)):
a = audio[B].squeeze(0)
t = text[B].squeeze(0)
audio_duration = a.shape[1]
min_duration = 75 * 3
max_duration = audio_duration // 2
if max_duration > min_duration:
audio_split = random.randint(min_duration, max_duration)
else:
audio_split = max_duration
audio_full.append(a[:, :audio_split].to(device, non_blocking=True))
audio_partial.append(a[:, audio_split:].to(device, non_blocking=True))
audio_codecs.append(random.randint(1, 7))
texts.append(t.to(device, non_blocking=True))
# Forward
with record_function("forward"):
_, loss = model(
condition_text = texts,
condition_audio = audio_full,
audio = audio_partial,
codec = audio_codecs,
loss = True
)
# Rescale loss
loss = loss / train_grad_accum_every
# Backprop
with record_function("backward"):
optim.zero_grad()
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), train_clip_grad_norm)
optim.step()
# Log skipping step
if not train_schedule_free:
if optim.step_was_skipped:
accelerator.print("Step was skipped")
if torch.isnan(loss):
raise ValueError("Loss is NaN")
return loss * train_grad_accum_every, lr
#
# Start Training
#
accelerator.print("Training started at step", step)
while step < train_steps:
# Step
start = time.time()
loss, lr = train_step()
end = time.time()
# Advance
step = step + 1
# Summary
if step % train_log_every == 0:
accelerator.log({
"learning_rate": lr if not train_schedule_free else train_lr_max,
"loss": loss,
"scale": accelerator.scaler.get_scale() if accelerator.scaler is not None else 1.0
}, step=step)
accelerator.print(f'Step {step} | Loss: {loss} | LR: {lr} | Time: {end - start}')
# Save
if step % train_save_every == 0:
save()
# End training
if accelerator.is_main_process:
accelerator.print("Finishing training...")
save()
accelerator.end_training()
accelerator.print('✨ Training complete!')
#
# Utility
#
def cycle(dl):
while True:
for data in dl:
yield data
if __name__ == "__main__":
main()