Modules: :py:mod:`pyscf.qmmm`
In the Quantum Mechanics - Molecular Mechanics (QM/MM) method, the system is divided into a QM region and an MM region. QM/MM models mainly differ in the treatment of the interaction between QM and MM regions.
The :mod:`qmmm` module implements the electronic embedding model, where classical point charges in the MM region are added into the QM Hamiltonian analogously to the nuclear charges:
\mathbf{H}_{\mathrm{QMMM}} =&\ \mathbf{H}_{\mathrm{QM}} + \mathbf{V}_{\mathrm{nuc}-\mathrm{MM}} + \mathbf{V}_{\mathrm{elec}-\mathrm{MM}} \\ =&\ \mathbf{H}_{\mathrm{QM}} + \sum_{A}^{N_{\mathrm{MM}}} \sum_{B}^{N_{\mathrm{QM}}} \frac{Q_{A}Q_{B}}{|\mathbf{R}_A - \mathbf{R}_B|} - \sum_{A}^{N_{\mathrm{MM}}} \sum_i^{N_{\mathrm{elec}}} \frac{Q_{A}}{|\mathbf{R}_A - \mathbf{r}_i|}
The total energy calculated using the above model includes the regular QM energy, the interaction between the nuclei in QM region and the MM charges, and the static Coulomb interaction between the electron density and the MM charges. It does not include the static Coulomb interactions of the MM point charges, the MM energy, the vdw interaction or other bonding/non-bonding effects between QM region and MM particles.
Another QM/MM model - polarizable embedding model - is provided in the :mod:`solvent` module. See :ref:`user_solvent` for details.
MM background charges support SCF methods :func:`scf.RHF`, :func:`scf.UHF`, :func:`scf.ROHF`, :func:`scf.RKS`, :func:`scf.UKS` and :func:`scf.ROKS`, by decorating the underlying SCF objects with :func:`qmmm.mm_charge`. A minimal example of using the :mod:`qmmm` module is as follows.
>>> from pyscf import gto, scf, qmmm >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz') >>> coords = [(0.5,0.6,0.8)] >>> charges = [-0.3] >>> mf = qmmm.mm_charge(scf.RHF(mol), coords, charges) >>> mf.kernel() converged SCF energy = -100.045455504517
In the above example, the coordinates (in the same unit as mol.unit
) and
charges of the point charges in the MM region are given by coords
and charges
,
respectively.
Note
Currently, MM charges do not support :func:`scf.GHF` and :func:`scf.GKS`.
Analytical nuclear gradients are calculated with the background charges.
>>> mf.nuc_grad_method().run() --------------- QMMM gradients --------------- x y z 0 H -0.0157686538 -0.0189223846 -0.1102601870 1 F -0.0830715173 -0.0996858207 0.1182587572 ----------------------------------------------
Note
The gradients obtained from
>>> from pyscf import grad >>> grad.RHF(mf).run()
for a :func:`qmmm.mm_charge` decorated mf
object
will be missing the contributions from the background charges.
If MM charges and X2C correction are used together, function :func:`qmmm.mm_charge` needs to be applied after X2C decoration.
>>> qmmm.mm_charge(scf.RHF(mol).x2c(), coords, charges).run() converged SCF energy = -100.126131355203 >>> qmmm.mm_charge(scf.RHF(mol).x2c1e(), coords, charges).run() converged SCF energy = -100.126131355203 >>> qmmm.mm_charge(scf.RHF(mol).sfx2c1e(), coords, charges).run() converged SCF energy = -100.126131355203
Note
X2C gradients with MM charges are not supported.
MM charges can also be used together with second order scf and solvation models.
Once function :func:`qmmm.mm_charge` is applied on the SCF object, it affects all the post-HF calculations, eg. MP2, CCSD, MCSCF, etc.
>>> from pyscf import mcscf >>> mf = qmmm.mm_charge(scf.RHF(mol), coords, charges).run() >>> mc = mcscf.CASSCF(mf, 4, 4) >>> mc.run(conv_tol=1E-10) CASSCF energy = -100.101848457578 CASCI E = -100.101848457578 E(CI) = -6.74400107375546 S^2 = 0.0000000