forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetr.yml
164 lines (164 loc) · 5.08 KB
/
setr.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
Collections:
- Name: SETR
Metadata:
Training Data:
- ADE20K
- Cityscapes
Paper:
URL: https://arxiv.org/abs/2012.15840
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers
README: configs/setr/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
Version: v0.17.0
Converted From:
Code: https://github.com/fudan-zvg/SETR
Models:
- Name: setr_naive_512x512_160k_b16_ade20k
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 211.86
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 18.4
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.28
mIoU(ms+flip): 49.56
Config: configs/setr/setr_naive_512x512_160k_b16_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth
- Name: setr_pup_512x512_160k_b16_ade20k
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 222.22
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 19.54
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.24
mIoU(ms+flip): 49.99
Config: configs/setr/setr_pup_512x512_160k_b16_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth
- Name: setr_mla_512x512_160k_b8_ade20k
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
Training Memory (GB): 10.96
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.34
mIoU(ms+flip): 49.05
Config: configs/setr/setr_mla_512x512_160k_b8_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth
- Name: setr_mla_512x512_160k_b16_ade20k
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 190.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 17.3
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.39
mIoU(ms+flip): 49.37
Config: configs/setr/setr_mla_512x512_160k_b16_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth
- Name: setr_vit-large_naive_8x1_768x768_80k_cityscapes
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (768,768)
lr schd: 80000
inference time (ms/im):
- value: 2564.1
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (768,768)
Training Memory (GB): 24.06
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.1
mIoU(ms+flip): 80.22
Config: configs/setr/setr_vit-large_naive_8x1_768x768_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth
- Name: setr_vit-large_pup_8x1_768x768_80k_cityscapes
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (768,768)
lr schd: 80000
inference time (ms/im):
- value: 2702.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (768,768)
Training Memory (GB): 27.96
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.21
mIoU(ms+flip): 81.02
Config: configs/setr/setr_vit-large_pup_8x1_768x768_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth
- Name: setr_vit-large_mla_8x1_768x768_80k_cityscapes
In Collection: SETR
Metadata:
backbone: ViT-L
crop size: (768,768)
lr schd: 80000
inference time (ms/im):
- value: 2439.02
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (768,768)
Training Memory (GB): 24.1
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.0
mIoU(ms+flip): 79.59
Config: configs/setr/setr_vit-large_mla_8x1_768x768_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth