forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmenter_vit-s_mask_8x1_512x512_160k_ade20k.py
66 lines (62 loc) · 2.17 KB
/
segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
_base_ = [
'../_base_/models/segmenter_vit-b16_mask.py',
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_small_p16_384_20220308-410f6037.pth' # noqa
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
model = dict(
pretrained=checkpoint,
backbone=dict(
img_size=(512, 512),
embed_dims=384,
num_heads=6,
),
decode_head=dict(
type='SegmenterMaskTransformerHead',
in_channels=384,
channels=384,
num_classes=150,
num_layers=2,
num_heads=6,
embed_dims=384,
dropout_ratio=0.0,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
optimizer = dict(lr=0.001, weight_decay=0.0)
img_norm_cfg = dict(
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
# num_gpus: 8 -> batch_size: 8
samples_per_gpu=1,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))