forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknet.yml
169 lines (169 loc) · 5.5 KB
/
knet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Collections:
- Name: KNet
Metadata:
Training Data:
- ADE20K
Paper:
URL: https://arxiv.org/abs/2106.14855
Title: 'K-Net: Towards Unified Image Segmentation'
README: configs/knet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
Version: v0.23.0
Converted From:
Code: https://github.com/ZwwWayne/K-Net/
Models:
- Name: knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 51.98
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.01
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.6
mIoU(ms+flip): 45.12
Config: configs/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth
- Name: knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 49.9
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.98
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.18
mIoU(ms+flip): 45.58
Config: configs/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth
- Name: knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 82.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.42
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.06
mIoU(ms+flip): 46.11
Config: configs/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth
- Name: knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 58.45
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.34
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.45
mIoU(ms+flip): 44.07
Config: configs/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth
- Name: knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: Swin-T
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 64.27
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.57
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.84
mIoU(ms+flip): 46.27
Config: configs/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth
- Name: knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: Swin-L
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 120.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 13.5
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.05
mIoU(ms+flip): 53.24
Config: configs/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth
- Name: knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k
In Collection: KNet
Metadata:
backbone: Swin-L
crop size: (640,640)
lr schd: 80000
inference time (ms/im):
- value: 180.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (640,640)
Training Memory (GB): 18.31
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.46
mIoU(ms+flip): 53.78
Config: configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220720_165636-cbcaed32.pth