-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
203 lines (193 loc) · 6.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import torch
import torch.optim as optim
from torchvision import transforms
from torchvision.datasets import MNIST
import wandb
from networks.dit import DiT
from networks.flux_encoder import VariationalEncoder
from trainers.ddpm import DDPMTrainer
from trainers.vdm import VDMTrainer
from trainers.edm import EDMTrainer
from trainers.rf import RFTrainer
from trainers.vrf import VRFTrainer
from trainers.pfgmpp import PFGMppTrainer
from trainers.cm import CMTrainer
from trainers.cd import CDTrainer
# Parse command line arguments
parser = argparse.ArgumentParser(description="Generative Model Training")
parser.add_argument('--model', type=str, required=True,
choices=['ddpm', 'edm', 'rf', 'vrf', 'pfgmpp', 'cm', 'cd', 'vdm'],
help='Which model to train')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--num_steps', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--nfe', type=int, default=500,
help='Number of diffusion steps (for diffusion models)')
parser.add_argument('--beta', type=float, default=1.0,
help='KL weight (for VRF)')
parser.add_argument('--sigma_min', type=float, default=0.002,
help='Min noise (for EDM/PFGM++)')
parser.add_argument('--sigma_max', type=float, default=80.0,
help='Max noise (for EDM/PFGM++)')
parser.add_argument('--save_dir', type=str, default='results',
help='Directory to save generated samples')
parser.add_argument('--image_format', type=str, default='png',
choices=['png', 'jpg'], help='Output format for samples')
args = parser.parse_args()
# Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Data preparation
tf = transforms.Compose([transforms.ToTensor()])
train_dataset = MNIST("./mnist", train=True, download=False, transform=tf)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
num_workers=args.num_workers,
pin_memory=True,
)
# Model instantiation
def create_model(model_type):
base_model = DiT(
input_size=(28, 28),
patch_size=4,
in_channels=2 if model_type == 'vrf' else 1,
out_channels=2 if model_type == 'vdm' else 1,
hidden_size=384,
depth=6,
num_heads=6,
mlp_ratio=4.0,
).to(device)
if model_type == 'vrf':
encoder = VariationalEncoder(
resolution=28,
in_channels=3,
ch=64,
ch_mult=[1],
num_res_blocks=2,
z_channels=2,
).to(device)
return base_model, encoder
return base_model
def create_trainer(model_type, model, optimizer, device, dataloader):
if model_type == 'ddpm':
return DDPMTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'edm':
return EDMTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
sigma_min=args.sigma_min,
sigma_max=args.sigma_max,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'vdm':
return VDMTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'pfgmpp':
return PFGMppTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
sigma_min=args.sigma_min,
sigma_max=args.sigma_max,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'cm':
return CMTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
sigma_min=args.sigma_min,
sigma_max=args.sigma_max,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'cd':
return CDTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'rf':
return RFTrainer(
model=model,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
save_dir=args.save_dir,
image_format=args.image_format
)
elif model_type == 'vrf':
model, encoder = model
return VRFTrainer(
model=model,
encoder=encoder,
beta_value=args.beta,
optimizer=optimizer,
device=device,
dataloader=dataloader,
nfe=args.nfe,
save_dir=args.save_dir,
image_format=args.image_format
)
else:
raise ValueError(f"Unknown model type: {model_type}")
if __name__ == "__main__":
# Create model and optimizer
if args.model == 'vrf':
model, encoder = create_model(args.model)
optimizer = optim.Adam(
list(model.parameters()) + list(encoder.parameters()),
lr=args.lr
)
else:
model = create_model(args.model)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Initialize wandb
wandb.init(
project="genmod_mnist",
name=args.model.upper(),
config=vars(args)
)
# Create and run trainer
trainer = create_trainer(
args.model,
model if not args.model == 'vrf' else (model, encoder),
optimizer,
device,
train_loader
)
trainer.train(args.num_steps)
trainer.sample()