-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGA_ANN.m~
91 lines (76 loc) · 2.61 KB
/
GA_ANN.m~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
% GA_ANN Tunes the weighting factors of a simple ANN by using GA
%
% Minimize the sum of square errors for y1 and y2
%
%**************************************************************************
global TrainSet ga_net
clear
clc
load SimData.txt
[ix,iy]=size(SimData);
y1=SimData(:,1); y2=SimData(:,2);
TrainSet=[y1 y2 y1 y2];
%**************************************************************************
%Loads preconfigured nerual network created with nntool from saved form.
%Loads variable neural_network
load ga_net.mat;
% ga_net.initFcn = 'initlay';
% ga_net.trainFcn = 'trainlm';
% ga_net = init(ga_net);
%
% %**************************************************************************
%
popSize=1000;
f_bounds=zeros(27,2);
f_bounds(:,1)=-4; f_bounds(:,2)=4;
evalFN='w_find';
initPop=initializega(popSize,f_bounds,evalFN);
[wbest,endPop,bestPop,traceInfo]=ga(f_bounds,evalFN,[],initPop,[],'maxGenTerm',[1000],...
'normGeomSelect',[0.08],['arithXover'],[2 0],...
'nonUnifMutation',[4 1000 3]);
plot(bestPop(:,1),bestPop(:,size(bestPop,2)),'--rs','LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',2);
%
% Train(ga_net,TrainSet(:,1:2)',TrainSet(:,1:2)');
ga_net.IW{1} = reshape(wbest(1:6),3,2);
ga_net.LW{2,1} = wbest(7:9);
ga_net.LW{3,2} = reshape(wbest(10:12),3,1);
ga_net.LW{4,3} = reshape(wbest(13:18),2,3);
ga_net.b{1}=reshape(wbest(19:21),3,1);
ga_net.b{2}=wbest(22);
ga_net.b{3}=reshape(wbest(23:25),3,1);
ga_net.b{4}=reshape(wbest(26:27),2,1);
xcalc = sim(ga_net,Train
Set(:,1:2)');
xdata=TrainSet(:,1:2);
subplot(2,1,1)
hold on;
plot(xcalc(:,1)); plot(xdata(:,1),'-r');
hold off;
subplot(2,1,2)
hold on;
plot(xcalc(:,2)); plot(xdata(:,2),'-r');
hold off;
figure;
hold on;
plot(xdata(:,1),xdata(:,2),'or','MarkerFaceColor','r')
axis([-1 1 -1 1]);
plot(xcalc(:,1),xcalc(:,2),'^b','MarkerFaceColor','b');
hold off;
%Validation Run
% ga_net.IW{1} = reshape(wbest(1:6),3,2);
% ga_net.LW{2,1} = wbest(7:9);
% ga_net.LW{3,2} = reshape(wbest(10:12),3,1);
% ga_net.LW{4,3} = reshape(wbest(13:18),2,3);
randu = rand(1,1000)*2*pi;
y1 = 0.8*sin(randu); y2= 0.8*cos(randu);
validationData= [ y1; y2]';
validationTest = sim(ga_net, validationData')';
figure
hold on;
plot(validationData(:,1),validationData(:,2),'or','MarkerFaceColor','r')
axis([-1 1 -1 1]);
plot(validationTest(:,1),validationTest(:,2),'^b','MarkerFaceColor','b');
hold off;