-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalize.ml
461 lines (436 loc) · 17.1 KB
/
normalize.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
open Ast
open Ast.Typ
open Location
(* Picks a clever name that is fresh for t: if t begins with a binder,
keep the same string representation. *)
let clever_fresh t default = match t.content with
| Lam(x, _, _) | BaseForall(x, _, _) | BaseExists(x, _, _) ->
Var.bfresh x.content
| FVar _ | BVar _ | App _ | Record _ | Proj _ |
BaseRecord _ | BaseArrow _ -> default
let option_map f = function
| None -> None
| Some x -> Some (f x)
(* given a type [ty] of kind [Sigma f] and a projection label [l],
[select_kind_field l ty f] computes the kind of [ty.l] *)
let rec select_kind_field label ty = function
| [] -> raise Not_found
| (label', (_, k)) :: _ when Label.equal label.content label' -> k
| (label', (x, _)) :: f ->
select_kind_field label ty
(Kind.bsubst_fields f x
(dummy_locate (mkProj ty (dummy_locate label'))))
(* given a type [ty] of kind [Sigma f],
[select_all_fields ty f] computes the map
[lab -> (ty.l, kind of ty.l) ] *)
let rec select_all_fields ty = function
| [] -> Label.Map.empty
| (label, (x, k)) :: f ->
let ty_lab = dummy_locate (mkProj ty (dummy_locate label)) in
Label.Map.add label (ty_lab, k)
(select_all_fields ty (Kind.bsubst_fields f x ty_lab))
let rec hd_norm_singleton_fields f t = match f with
| [] -> []
| (lab, (x, k)) :: f ->
let t_lab = dummy_locate (mkProj t (dummy_locate lab)) in
let k' = Kind.mkSingle t_lab k in
let y = Var.bfresh x in
let f' = hd_norm_singleton_fields (Kind.bsubst_fields f x t_lab) t in
(lab, (y, k')) :: f'
let rec hd_norm_singleton k t = match k with
| Base | Single (_, Base) -> Kind.mkSingle t Kind.mkBase
| Single(t', k') ->
hd_norm_singleton (hd_norm_singleton k' t') t
| Pi(y, k1, k2) ->
let x = clever_fresh t (Var.bfresh y) in
let x_var = dummy_locate (mkVar x) in
let t' = dummy_locate (mkApp t x_var)
and k' = Kind.bsubst k2 y x_var in
Kind.mkPi x k1 (Kind.mkSingle t' k')
| Sigma f ->
Kind.mkSigma (hd_norm_singleton_fields f t)
let simplify_kind = function
| Single(t, k) -> hd_norm_singleton k t
| (Base | Pi(_,_,_) | Sigma _) as k -> k
let rec is_path t = match t.content with
| FVar _ | BaseForall _ | BaseExists _ | BaseRecord _ | BaseArrow _ -> true
| App(t, _) | Proj(t, _) -> is_path t
| Lam _ | Record _ -> false
| BVar _ -> assert false
(** [head_norm e tau] returns (tau', o) where tau' is the head
normal form of tau in the environment e. If tau' is a path, then
o = Some k where k is its natural kind. If tau' is not a path,
then o = None. *)
let rec head_norm ~unfold_eq env t = match t.content with
| BaseForall(_, _, _) | BaseExists (_,_,_) | BaseRecord _ | BaseArrow(_, _) ->
(t, Some Kind.mkBase)
| FVar x ->
begin
try
let (mode, k) = Env.Typ.get_var x env in
let k = simplify_kind k in
match k with
| Single (u, Base) ->
head_norm ~unfold_eq env u
| Single (_, _) -> assert false
| (Base | Pi(_,_,_) | Sigma _) ->
begin
let open Mode in
match (unfold_eq, mode) with
| (true, { content = EQ tau ; _ }) ->
head_norm ~unfold_eq env tau
| (true, { content = (U | E) ; _ }) | (false, _) -> (t, Some k)
end
with Not_found -> assert false
end
| Lam(_,_,_) | Record _ -> (t, None)
| BVar _ -> assert false
| App(t1, t2) ->
begin
let (t1', k) = head_norm ~unfold_eq env t1 in
match (t1'.content, option_map simplify_kind k) with
| (Lam ({ content = x ; _ }, _tau, t), None) ->
head_norm ~unfold_eq env (bsubst t x t2)
| ((FVar _ | App(_,_) | Proj(_,_)), Some (Pi(x, _, k1))) ->
begin
match simplify_kind (Kind.bsubst k1 x t2) with
| Single (u, Base) ->
head_norm ~unfold_eq env u
| Single (_, _) -> assert false
| (Base | Pi(_,_,_) | Sigma _) as k ->
({ t with content = mkApp t1' t2 } , Some k)
end
| ((FVar _ | BVar _ | App(_,_) | Proj(_,_) | Lam(_,_,_) |
Record _ | BaseArrow (_, _) | BaseRecord _ |
BaseForall (_, _, _) | BaseExists (_, _, _)),
(None |
Some (Base | Single (_,_) | Pi(_,_,_) | Sigma _))) -> assert false
end
| Proj(t', lab) ->
begin
let (t', k) = head_norm ~unfold_eq env t' in
match (t'.content, option_map simplify_kind k) with
| (Record m, None) ->
begin
try head_norm ~unfold_eq env (Label.Map.find lab.content m)
with Not_found ->
Error.raise_error Error.syntax t.startpos t.endpos
("Illegal label projection: " ^ lab.content ^ ".")
end
| ((FVar _ | App(_,_) | Proj(_,_)), Some (Sigma f)) ->
begin
try
match simplify_kind (select_kind_field lab t' f) with
| (Single (u, Base)) ->
head_norm ~unfold_eq env u
| Single (_, _) -> assert false
| (Base | Pi(_,_,_) | Sigma _) as k ->
({ t with content = mkProj t' lab }, Some k)
with Not_found ->
Error.raise_error Error.syntax t.startpos t.endpos
("Illegal label projection: " ^ lab.content ^ ".")
end
| ((FVar _ | BVar _ | BaseArrow (_, _) | BaseRecord _ |
BaseForall (_, _, _) | BaseExists (_,_,_) | Lam (_, _, _) | App(_,_) |
Proj(_,_) | Record _),
(None |
Some (Base | Single (_,_) | Pi(_,_,_) | Sigma _))) -> assert false
end
let head_norm ~unfold_eq env t = fst (head_norm ~unfold_eq env t)
let rec path_norm ~unfold_eq env t = match t.content with
| BaseRecord m ->
let m' =
Label.Map.map (fun t -> typ_norm ~unfold_eq env t Kind.mkBase) m in
({ t with content = mkBaseRecord m' }, Kind.mkBase)
| BaseArrow(t1, t2) ->
let t1' = typ_norm ~unfold_eq env t1 Kind.mkBase
and t2' = typ_norm ~unfold_eq env t2 Kind.mkBase in
({ t with content = mkBaseArrow t1' t2' }, Kind.mkBase)
| BaseForall ({ content = x ; _ } as x_loc, k1, t1) ->
let k1' = { k1 with content = kind_norm ~unfold_eq env k1.content } in
let x' = Var.bfresh x in
let x_var' = dummy_locate (mkVar x') in
let t1' =
typ_norm ~unfold_eq
(Env.Typ.add_var (locate_with Mode.U x_loc) x' k1.content env)
(bsubst t1 x x_var') Kind.mkBase in
({ t with content = mkBaseForall (locate_with x' x_loc) k1' t1' },
Kind.mkBase)
| BaseExists ({ content = x ; _ } as x_loc, k1, t1) ->
let k1' = { k1 with content = kind_norm ~unfold_eq env k1.content } in
let x' = Var.bfresh x in
let x_var' = dummy_locate (mkVar x') in
let t1' =
typ_norm ~unfold_eq
(Env.Typ.add_var (locate_with Mode.U x_loc) x' k1.content env)
(bsubst t1 x x_var') Kind.mkBase in
({ t with content = mkBaseExists (locate_with x' x_loc) k1' t1' },
Kind.mkBase)
| FVar x ->
begin
try (t, snd (Env.Typ.get_var x env))
with Not_found -> assert false
end
| BVar _ | Lam (_,_,_) | Record _ -> assert false
| App(p, t) ->
begin
let (p', k) = path_norm ~unfold_eq env p in
match simplify_kind k with
| Pi(x, k1, k2) ->
let t' = typ_norm ~unfold_eq env t k1 in
({ t with content = mkApp p' t' }, Kind.bsubst k2 x t)
| Base | Single (_,_) | Sigma _ -> assert false
end
| Proj(p, lab) ->
begin
let (p', k) = path_norm ~unfold_eq env p in
match simplify_kind k with
| Sigma f ->
begin
try
({ t with content = mkProj p' lab }, select_kind_field lab p f)
with Not_found ->
Error.raise_error Error.syntax t.startpos t.endpos
("Illegal label projection: " ^ lab.content ^ ".")
end
| Base | Single (_,_) | Pi(_,_,_) -> assert false
end
and typ_norm ~unfold_eq env t k = match simplify_kind k with
| Base | Single (_,Base) ->
let t' = head_norm ~unfold_eq env t in
let (t'', k'') = path_norm ~unfold_eq env t' in
assert (Ast.Kind.equal k'' Kind.mkBase) ;
t''
| Single (_, _) -> assert false
| Pi(y, k1, k2) ->
let k1' = dummy_locate (kind_norm ~unfold_eq env k1) in
let x = clever_fresh t (Var.bfresh y) in
let x_var = dummy_locate (mkVar x) in
let t_ext = dummy_locate (mkApp t x_var) in
let t' =
typ_norm ~unfold_eq (Env.Typ.add_var (dummy_locate Mode.U) x k1 env)
t_ext (Kind.bsubst k2 y x_var) in
{ t with content = mkLam (dummy_locate x) k1' t' }
| Sigma f ->
let projections = select_all_fields t f in
{ t with content = mkRecord
(Label.Map.map
(fun (t_l, k_l) -> typ_norm ~unfold_eq env t_l k_l) projections) }
and kind_norm ~unfold_eq env = function
| Base -> Kind.mkBase
| Single (t, Base) ->
Kind.mkSingle (typ_norm ~unfold_eq env t Kind.mkBase) Kind.mkBase
| Single (t, k) -> kind_norm ~unfold_eq env (hd_norm_singleton k t)
| Pi(x, k1, k2) ->
let k1' = kind_norm ~unfold_eq env k1
and y = Var.bfresh x in
let y_var = dummy_locate (mkVar y) in
let k2' = kind_norm ~unfold_eq
(Env.Typ.add_var (dummy_locate Mode.U) y k1 env)
(Kind.bsubst k2 x y_var) in
Kind.mkPi y k1' k2'
| Sigma f ->
let f' = kind_fields_norm ~unfold_eq env f in
Kind.mkSigma f'
and kind_fields_norm ~unfold_eq env = function
| [] -> []
| (lab, (x, k)) :: f ->
let k' = kind_norm ~unfold_eq env k
and y = Var.bfresh x in
let y_var = dummy_locate (mkVar y) in
let f' =
kind_fields_norm ~unfold_eq
(Env.Typ.add_var (dummy_locate Mode.U) y k env)
(Kind.bsubst_fields f x y_var)
in (lab, (y, k')) :: f'
let rec try_equiv_typ ~unfold_eq env t1 t2 k =
let open Answer in
match k with
| Base ->
let p1 = head_norm ~unfold_eq env t1
and p2 = head_norm ~unfold_eq env t2 in
begin
match equiv_path ~unfold_eq env p1 p2 with
| WithValue.Yes Base -> Yes
| WithValue.Yes (Single (_,_) | Pi(_,_,_) | Sigma _) -> assert false
| WithValue.No reasons -> No reasons
end
| Single (_,_) -> Yes (* used to be on Single(_,Base) only *)
| Pi(x, k1, k2) ->
let y = clever_fresh t1 (clever_fresh t2 (Var.bfresh x)) in
let y_var = dummy_locate (mkVar y) in
equiv_typ ~unfold_eq
(Env.Typ.add_var (dummy_locate Mode.U) y k1 env)
(dummy_locate (mkApp t1 y_var))
(dummy_locate (mkApp t2 y_var))
(Kind.bsubst k2 x y_var)
| Sigma f ->
let projections = select_all_fields t1 f in
Label.Map.fold
(fun lab (t1_lab, k_lab) acc ->
acc &*&
(fun () ->
let t2_lab = dummy_locate (mkProj t2 (dummy_locate lab)) in
equiv_typ ~unfold_eq env t1_lab t2_lab k_lab))
projections Yes
and equiv_typ ~unfold_eq env t1 t2 k =
let open Answer in
match try_equiv_typ ~unfold_eq env t1 t2 k with
| Yes -> Yes
| No reasons -> No (TYPES_EQ (t1, t2) :: reasons)
and equiv_path ~unfold_eq env p1 p2 =
let open Answer in
match (p1.content, p2.content) with
| (BaseRecord m, BaseRecord m') ->
equiv_bindings ~unfold_eq env
(Label.Map.bindings m) (Label.Map.bindings m')
| (BaseArrow(t1, t2), BaseArrow(t1', t2')) ->
begin
let open Kind in
match equiv_typ ~unfold_eq env t1 t1' mkBase &*&
(fun () -> equiv_typ ~unfold_eq env t2 t2' mkBase) with
| Yes -> WithValue.Yes mkBase
| No reasons -> WithValue.No reasons
end
| (BaseForall({ content = x ; _ } as x_loc, k, t),
BaseForall({ content = x' ; _ }, k', t'))
| (BaseExists({ content = x ; _ } as x_loc, k, t),
BaseExists({ content = x' ; _ }, k', t')) ->
begin
match
equiv_kind ~unfold_eq env k.content k'.content &*&
(fun () ->
let y = Var.bfresh x in
let y_var = dummy_locate (mkVar y) in
equiv_typ ~unfold_eq
(Env.Typ.add_var (locate_with Mode.U x_loc) y k.content env)
(bsubst t x y_var) (bsubst t' x' y_var) Kind.mkBase
)
with
| Yes -> WithValue.Yes Kind.mkBase
| No reasons -> WithValue.No reasons
end
| (FVar x, FVar x') ->
if Var.equal x x'
then
begin
try WithValue.Yes (snd (Env.Typ.get_var x env))
with Not_found -> assert false
end
else WithValue.No []
| (App(p, t), App(p', t')) ->
begin
match WithValue.map simplify_kind (equiv_path ~unfold_eq env p p') with
| WithValue.Yes (Pi(x, k1, k2)) ->
begin
match equiv_typ ~unfold_eq env t t' k1 with
| Yes -> WithValue.Yes (Kind.bsubst k2 x t)
| No reasons -> WithValue.No reasons
end
| WithValue.Yes (Base | Single (_,_) | Sigma _) -> assert false
| WithValue.No reasons -> WithValue.No reasons
end
| (Proj(t, lab), Proj(t', lab')) when Label.equal lab.content lab'.content ->
begin
match WithValue.map simplify_kind (equiv_path ~unfold_eq env t t') with
| WithValue.Yes (Sigma f) -> WithValue.Yes (select_kind_field lab t f)
| WithValue.Yes (Base | Single (_,_) | Pi(_,_,_)) -> assert false
| WithValue.No reasons -> WithValue.No reasons
end
| ((FVar _ | BVar _ | Proj (_, _) | Record _ | Lam (_, _, _) |
App (_, _) | BaseForall (_, _, _) | BaseExists (_,_,_) |
BaseArrow (_, _) | BaseRecord _),
_) -> WithValue.No []
and equiv_bindings ~unfold_eq env b1 b2 =
let open Answer in match (b1, b2) with
| ([], []) -> WithValue.Yes Kind.mkBase
| ([], b) | (b, []) ->
WithValue.No
[TYPES_EQ
(dummy_locate (mkBaseRecord Label.Map.empty),
dummy_locate
(mkBaseRecord
(List.fold_left
(fun acc (lab, t) -> Label.Map.add lab t acc)
Label.Map.empty b)))]
| ((lab1, t1) :: _, (lab2, t2) :: _) when not (Label.equal lab1 lab2) ->
WithValue.No
[TYPES_EQ
(dummy_locate (mkBaseRecord (Label.Map.singleton lab1 t1)),
dummy_locate (mkBaseRecord (Label.Map.singleton lab1 t2)))]
| ((lab1, t1) :: b1, (lab2, t2) :: b2) (* lab1 = lab2 *) ->
begin
match equiv_typ ~unfold_eq env t1 t2 Kind.mkBase with
| Yes -> equiv_bindings ~unfold_eq env b1 b2
| No reasons ->
WithValue.No
(TYPES_EQ
(dummy_locate (mkBaseRecord (Label.Map.singleton lab1 t1)),
dummy_locate (mkBaseRecord (Label.Map.singleton lab2 t2)))
:: reasons)
end
and equiv_kind ~unfold_eq env k1 k2 =
let open Answer in
sub_kind ~unfold_eq env k1 k2 &*&
(fun () -> sub_kind ~unfold_eq env k2 k1)
and sub_kind ~unfold_eq env k1 k2 =
let x = Var.fresh () in
let x_var = dummy_locate (mkVar x) in
check_sub_kind ~unfold_eq (Env.Typ.add_var (dummy_locate Mode.U) x k1 env)
x_var (simplify_kind k1) (simplify_kind k2)
and try_check_sub_kind ~unfold_eq env p k k' =
let open Answer in
match (simplify_kind k, simplify_kind k') with
| ((Base | Single (_, Base)), Base) -> Yes
| (Base, Single (t', Base)) ->
equiv_typ ~unfold_eq env p t' Kind.mkBase
| (Single (t, Base), Single (t', Base)) ->
equiv_typ ~unfold_eq env t t' Kind.mkBase
| (Single (_, (Single(_,_) | Pi(_,_,_) | Sigma _)), _)
| (_, Single (_,_)) -> assert false (* kinds are simplified by sub_kind *)
| (Pi(x, k1, k2), Pi(x', k1', k2')) ->
sub_kind ~unfold_eq env k1' k1 &*&
(fun () ->
let y = Var.bfresh x in
let y_var = dummy_locate (mkVar y) in
check_sub_kind ~unfold_eq
(Env.Typ.add_var (dummy_locate Mode.U) y k1' env)
(dummy_locate (mkApp p y_var))
(Kind.bsubst k2 x y_var)
(Kind.bsubst k2' x' y_var)
)
| (Sigma f, Sigma f') ->
let projections = select_all_fields p f
and projections' = select_all_fields p f' in
(* for all l ∈ dom f', env ⊢ f(l) ≤ f'(l) *)
Label.Map.fold
(fun lab (p_lab, k'_lab) acc ->
acc &*&
(fun () ->
try
let (_, k_lab) = Label.Map.find lab projections in
match check_sub_kind ~unfold_eq env p_lab k_lab k'_lab with
| Yes -> Yes
| No reasons ->
let var = Var.fresh () in
No (KINDS_SUB
(Kind.mkSigma [lab, (var, k_lab)],
Kind.mkSigma [lab, (var, k'_lab)])
:: reasons)
with Not_found ->
No [KINDS_MISSING_FIELD (lab, k'_lab)]
)
)
projections' Yes
| ((Base | Single (_, Base) | Sigma _ | Pi(_,_,_)), _) -> No []
and check_sub_kind ~unfold_eq env p k k' =
let open Answer in
match try_check_sub_kind ~unfold_eq env p k k' with
| Yes -> Yes
| No reasons -> No (KINDS_SUB (k,k') :: reasons)
let equiv_typ_b ~unfold_eq env t1 t2 k =
Answer.to_bool (equiv_typ ~unfold_eq env t1 t2 k)
let equiv_kind_b ~unfold_eq env k1 k2 =
Answer.to_bool (equiv_kind ~unfold_eq env k1 k2)
let sub_kind_b ~unfold_eq env k1 k2 =
Answer.to_bool (sub_kind ~unfold_eq env k1 k2)