-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeaturemapping.py
263 lines (213 loc) · 7.76 KB
/
featuremapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import re
def splitUpper(item):
regexp = ' |\^|/|,|\.|\+|_|\(|\)|-'
return [u.upper() for u in re.split(regexp, item)]
def getTermCount(featureMap, dataSet):
termCount = dict()
for item in dataSet:
values = featureMap.getValues(item)
for value in values:
termCount[value] = termCount.get(value, 0) + 1
return termCount
def getCommonTerms(featureMap, dataSet, minCount = None, size = None):
termCount = getTermCount(featureMap, dataSet)
sortedTerms = sorted(termCount.items(), key = lambda x: x[1], reverse = True)
if not minCount:
minCount = -1
if not size:
size = len(sortedTerms)
def commonGenerator():
count = 0
for t in sortedTerms:
# As soon as the predicate is true, we stop
# generating.
if t[1] < minCount or count >= size:
return
count += 1
yield t[0]
return [t for t in commonGenerator()]
class FeatureMapBase(object):
def __init__(self, accessorFunc, valueFunc):
self._dimension = 0
self._range = 0
if not accessorFunc:
accessorFunc = lambda x: x
if not valueFunc:
valueFunc = lambda x: x
self.accessorFunc = accessorFunc
self.valueFunc = valueFunc
def getValues(self, item):
return self.valueFunc(self.accessorFunc(item))
@property
def dimension(self):
return self._dimension
@property
def range(self):
return self._range
def build(self, data):
raise NotImplementedError()
def map(self, item):
raise NotImplementedError()
class BagOfItemsMap(FeatureMapBase):
def __init__(self, accessorFunc, valueFunc):
super().__init__(accessorFunc, valueFunc)
self.dictionary = dict()
def getUniqueValues(self, dataSet):
# Build a unique set of items.
uniqueSet = set()
for sample in dataSet:
values = self.getValues(sample)
for value in values:
uniqueSet.add(value)
return uniqueSet
def buildIndexDictionary(self, terms):
# With the set of terms we can build a dictionary
self.dictionary = dict()
index = 0
for term in terms:
self.dictionary[term] = index
index += 1
def build(self, terms):
self.buildIndexDictionary(terms)
size = len(self.dictionary)
self._dimension = size
self._range = size
def getIndexes(self, item):
values = self.getValues(item)
uniqueIndexes = set()
for value in values:
index = self.dictionary.get(value)
if not (index is None):
uniqueIndexes.add(index)
result = [v for v in uniqueIndexes]
return result
def map(self, item):
result = np.zeros(self.dimension, dtype='float32')
indexes = self.getIndexes(item)
result[indexes] = 1.0
return result
class NumberMap(FeatureMapBase):
def __init__(self, dimension, accessorFunc, valueFunc):
super().__init__(accessorFunc, valueFunc)
self._dimension = dimension
self._range = None
def build(self, data):
pass
def map(self, item):
values = self.getValues(item)
result = np.asarray(values, dtype='float32')
return result
class LabelMap(BagOfItemsMap):
def __init__(self, accessorFunc, valueFunc):
super().__init__(accessorFunc, valueFunc)
self.inverseDictionary = dict()
def build(self, labels):
super().build(labels)
self._dimension = 1
for key, value in self.dictionary.items():
self.inverseDictionary[value] = key
def map(self, item):
result = np.zeros(self.dimension, dtype='float32')
# Use the item index as value
result[:] = self.getIndexes(item)
return result
def inverseMap(self, index):
result = self.inverseDictionary.get(index)
if result is None:
raise ValueError()
return result
class ItemMapper(object):
def __init__(self, features, label):
self.featureMappers = features
self.labelMapper = label
self._dimension = sum([m.dimension for m in self.featureMappers])
self._range = self.labelMapper.range
@property
def dimension(self):
return self._dimension
@property
def range(self):
return self._range
def mapFeatures(self, dataSet):
numberOfSamples = len(dataSet)
result = np.zeros((numberOfSamples, self.dimension), dtype = 'float32')
for i in range(numberOfSamples):
if not i % 100:
print("Sample {0}".format(i))
item = dataSet[i]
itemFeatures = [m.map(item) for m in self.featureMappers]
result[i] = np.concatenate(itemFeatures)
return result
def mapLabels(self, dataSet):
numberOfSamples = len(dataSet)
result = np.zeros((numberOfSamples, ), dtype = 'float32')
for i in range(numberOfSamples):
item = dataSet[i]
result[i] = self.labelMapper.map(item)
return result
def map(self, dataSet):
return self.mapFeatures(dataSet), self.mapLabels(dataSet)
class FieldDescriptor(object):
def __init__(self, key, mapper):
self._key = key
self._mapper = mapper
@property
def key(self):
return self._key
@property
def mapper(self):
return self._mapper
class DictionaryField(FieldDescriptor):
def __init__(self, key, minCount = None, size = None, valueLength = None):
valueFunc = splitUpper
if valueLength:
valueFunc = lambda x: [p[:min(len(p), valueLength)] for p in splitUpper(x)]
super().__init__(key, BagOfItemsMap(lambda x: x[key], valueFunc))
self.minCount = minCount
self.maxSize = size
def build(self, dataSet):
self.mapper.build(getCommonTerms(self.mapper, dataSet, self.minCount, self.maxSize))
class NumberField(FieldDescriptor):
def __init__(self, key, dimension):
super().__init__(key, NumberMap(lambda x: x[key], lambda x: float(x)))
def build(self, dataSet):
pass
class LabelField(FieldDescriptor):
def __init__(self, key):
super().__init__(key, LabelMap(lambda x: x[key], splitUpper))
def build(self, dataSet):
self.mapper.build(self.mapper.getUniqueValues(dataSet))
class ItemMapperBuilder(object):
def __init__(self, description):
self.description = description
def build(self, dataSet):
features = []
label = None
for field in self.description:
typeField = self.createField(field)
typeField.build(dataSet)
if type(typeField) is LabelField:
if label is not None:
raise AssertionError()
label = typeField.mapper
else:
features.append(typeField.mapper)
self.pipe = ItemMapper(features, label)
def createField(self, field):
result = None
type = field["type"]
key = field["key"]
if type == "dict":
minCount = field.get("minCount")
size = field.get("size")
valueLength = field.get("valueLength")
result = DictionaryField(key, minCount, size, valueLength)
elif type == "num":
dim = field["dim"]
result = NumberField(key, dim)
elif type == "label":
result = LabelField(key)
else:
raise NotImplementedError()
return result