-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_car.py
37 lines (32 loc) · 1.48 KB
/
train_car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import os.path
import random
import util
import car
from time import time
import training
from keras.callbacks import EarlyStopping, ModelCheckpoint
model = car.create_model(util.preprocess_opts)
car.compile_model(model)
if os.path.exists("car.h5"):
print("Loading existing model from car.h5")
model.load_weights("car.h5")
validation_size = 350
(trn,val) = util.validation_split(util.all_examples(),validation_size)
batch_size = 20
train_generator = training.sample_generator(category="car",
examples=trn,
batch_size=batch_size,
augmentations_per_example=5)
validation_generator = training.sample_generator(category="car",
examples=val,
batch_size=batch_size)
stop_early = EarlyStopping(monitor='val_fscore', patience=50, mode='max', verbose=1)
save_best = ModelCheckpoint(filepath='car.h5', monitor='val_fscore', mode='max',
save_best_only=True, save_weights_only=True, verbose=1)
model.fit_generator(train_generator,
validation_data=validation_generator,
steps_per_epoch=1000/batch_size,
validation_steps=int(2*validation_size/batch_size),
callbacks=[stop_early, save_best],
epochs=200)