forked from princeton-nlp/DensePhrases
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_phrase_retrieval.py
420 lines (358 loc) · 17.1 KB
/
eval_phrase_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import json
import argparse
import torch
import os
import random
import numpy as np
import requests
import logging
import math
import copy
import string
import faiss
import csv
import subprocess
from time import time
from tqdm import tqdm
from densephrases.utils.eval_utils import normalize_answer, f1_score, exact_match_score, drqa_exact_match_score, \
drqa_regex_match_score, drqa_metric_max_over_ground_truths, drqa_normalize
from densephrases.utils.single_utils import load_encoder
from densephrases.utils.open_utils import load_phrase_index, get_query2vec, load_qa_pairs
from densephrases.utils.kilt.eval import evaluate as kilt_evaluate
from densephrases.utils.kilt.kilt_utils import store_data as kilt_store_data
from densephrases import Options
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def embed_all_query(questions, args, query_encoder, tokenizer, batch_size=64):
query2vec = get_query2vec(
query_encoder=query_encoder, tokenizer=tokenizer, args=args, batch_size=batch_size
)
all_outs = []
for q_idx in tqdm(range(0, len(questions), batch_size)):
outs = query2vec(questions[q_idx:q_idx+batch_size])
all_outs += outs
start = np.concatenate([out[0] for out in all_outs], 0)
end = np.concatenate([out[1] for out in all_outs], 0)
query_vec = np.concatenate([start, end], 1)
logger.info(f'Query reps: {query_vec.shape}')
return query_vec
def evaluate(args, mips=None, query_encoder=None, tokenizer=None, q_idx=None):
# Load dataset and encode queries
qids, questions, answers, _ = load_qa_pairs(args.test_path, args, q_idx)
if query_encoder is None:
logger.info(f'Query encoder will be loaded from {args.load_dir}')
device = 'cuda' if args.cuda else 'cpu'
query_encoder, tokenizer, _ = load_encoder(device, args)
query_vec = embed_all_query(questions, args, query_encoder, tokenizer)
# Load MIPS
if mips is None:
mips = load_phrase_index(args)
# Search
step = args.eval_batch_size
logger.info(f'Aggergation strategy used: {args.agg_strat}')
predictions = []
evidences = []
titles = []
scores = []
se_poss = []
for q_idx in tqdm(range(0, len(questions), step)):
result = mips.search(
query_vec[q_idx:q_idx+step],
q_texts=questions[q_idx:q_idx+step], nprobe=args.nprobe,
top_k=args.top_k, max_answer_length=args.max_answer_length,
aggregate=args.aggregate, agg_strat=args.agg_strat, return_sent=args.return_sent
)
prediction = [[ret['answer'] for ret in out][:args.top_k] if len(out) > 0 else [''] for out in result]
evidence = [[ret['context'] for ret in out][:args.top_k] if len(out) > 0 else [''] for out in result]
title = [[ret['title'] for ret in out][:args.top_k] if len(out) > 0 else [['']] for out in result]
score = [[ret['score'] for ret in out][:args.top_k] if len(out) > 0 else [-1e10] for out in result]
se_pos = [[(ret['start_pos'], ret['end_pos']) for ret in out][:args.top_k] if len(out) > 0 else [(0,0)] for out in result]
predictions += prediction
evidences += evidence
titles += title
scores += score
se_poss += se_pos
# logger.info(f"Avg. {sum(mips.num_docs_list)/len(mips.num_docs_list):.2f} number of docs per query")
eval_fn = evaluate_results if not args.is_kilt else evaluate_results_kilt
return eval_fn(predictions, qids, questions, answers, args, evidences, scores, titles, se_positions=se_poss)
def evaluate_results(predictions, qids, questions, answers, args, evidences, scores, titles, se_positions=None):
# Filter if there's candidate
if args.candidate_path is not None:
candidates = set()
with open(args.candidate_path) as f:
for line in f:
line = line.strip().lower()
candidates.add(line)
logger.info(f'{len(candidates)} candidates are loaded from {args.candidate_path}')
topk_preds = [list(filter(lambda x: (x in candidates) or (x.lower() in candidates), a)) for a in predictions]
topk_preds = [a[:args.top_k] if len(a) > 0 else [''] for a in topk_preds]
predictions = topk_preds[:]
top1_preds = [a[0] for a in topk_preds]
else:
predictions = [a[:args.top_k] if len(a) > 0 else [''] for a in predictions]
top1_preds = [a[0] for a in predictions]
no_ans = sum([a == '' for a in top1_preds])
logger.info(f'no_ans/all: {no_ans}, {len(top1_preds)}')
logger.info(f'Evaluating {len(top1_preds)} answers')
# Get em/f1
f1s, ems = [], []
for prediction, groundtruth in zip(top1_preds, answers):
if len(groundtruth)==0:
f1s.append(0)
ems.append(0)
continue
f1s.append(max([f1_score(prediction, gt)[0] for gt in groundtruth]))
ems.append(max([exact_match_score(prediction, gt) for gt in groundtruth]))
final_f1, final_em = np.mean(f1s), np.mean(ems)
if not args.regex:
logger.info('EM: %.2f, F1: %.2f'%(final_em * 100, final_f1 * 100))
# Top 1/k em (or regex em)
exact_match_topk = 0
exact_match_top1 = 0
f1_score_topk = 0
f1_score_top1 = 0
redundant_topk = 0
pred_out = {}
for i in range(len(predictions)):
# For debugging
if i < 3:
logger.info(f'{i+1}) {questions[i]}')
logger.info(f'=> groundtruths: {answers[i]}, top 5 prediction: {predictions[i][:5]}')
match_fn = drqa_regex_match_score if args.regex else drqa_exact_match_score
em_topk = max([drqa_metric_max_over_ground_truths(
match_fn, prediction, answers[i]
) for prediction in predictions[i][:args.top_k]])
em_top1 = drqa_metric_max_over_ground_truths(
match_fn, top1_preds[i], answers[i]
)
exact_match_topk += em_topk
exact_match_top1 += em_top1
# Compute top-k redundancy (could be ill-defined for regex)
rd_topk = sum([drqa_metric_max_over_ground_truths(
match_fn, prediction, [predictions[i][0]]
) for prediction in predictions[i][:args.top_k]])
redundant_topk += rd_topk
f1_topk = 0
f1_top1 = 0
if not args.regex:
match_fn = lambda x, y: f1_score(x, y)[0]
f1_topk = max([drqa_metric_max_over_ground_truths(
match_fn, prediction, answers[i]
) for prediction in predictions[i][:args.top_k]])
f1_top1 = drqa_metric_max_over_ground_truths(
match_fn, top1_preds[i], answers[i]
)
f1_score_topk += f1_topk
f1_score_top1 += f1_top1
# Score statistics
assert len(predictions[i]) <= args.top_k
pred_out[qids[i]] = {
'question': questions[i],
'answer': answers[i], 'prediction': predictions[i], 'score': scores[i], 'title': titles[i],
'evidence': evidences[i] if evidences is not None else '',
'em_top1': bool(em_top1), f'em_top{args.top_k}': bool(em_topk),
'f1_top1': f1_top1, f'f1_top{args.top_k}': f1_topk,
'se_pos': se_positions[i] if se_positions is not None else (-1, -1),
'rd_topk': rd_topk,
}
total = len(predictions)
exact_match_top1 = 100.0 * exact_match_top1 / total
f1_score_top1 = 100.0 * f1_score_top1 / total
logger.info({'exact_match_top1': exact_match_top1, 'f1_score_top1': f1_score_top1})
exact_match_topk = 100.0 * exact_match_topk / total
f1_score_topk = 100.0 * f1_score_topk / total
logger.info({f'exact_match_top{args.top_k}': exact_match_topk, f'f1_score_top{args.top_k}': f1_score_topk})
redundant_topk = redundant_topk / total
logger.info({f'redundancy of top{args.top_k}': redundant_topk})
# Dump predictions
if len(args.load_dir) == 0:
pred_dir = os.path.join(os.environ['SAVE_DIR'], 'pred')
else:
pred_dir = os.path.join(args.load_dir, 'pred')
if not os.path.exists(pred_dir):
os.makedirs(pred_dir)
if args.save_pred:
pred_path = os.path.join(
pred_dir, os.path.splitext(os.path.basename(args.test_path))[0] + f'_{total}_top{args.top_k}.pred'
)
logger.info(f'Saving prediction file to {pred_path}')
with open(pred_path, 'w') as f:
json.dump(pred_out, f)
# Evaluate passage retrieval
if args.eval_psg:
evaluate_results_psg(pred_path, args)
return exact_match_top1, f1_score_top1, exact_match_topk, f1_score_topk
def evaluate_results_kilt(predictions, qids, questions, answers, args, evidences, scores, titles, se_positions=None):
total=len(predictions)
# load title2id dict and convert predicted titles into wikipedia_ids
with open(args.title2wikiid_path) as f:
title2wikiid = json.load(f)
pred_wikipedia_ids = [[[title2wikiid[t] for t in title_] for title_ in title] for title in titles]
# dump official predictions
if len(args.load_dir) == 0:
pred_dir = os.path.join(os.environ['SAVE_DIR'], 'pred-kilt')
else:
pred_dir = os.path.join(args.load_dir, 'pred-kilt')
if not os.path.exists(pred_dir):
os.makedirs(pred_dir)
pred_official_path = os.path.join(
pred_dir, f'{args.load_dir.split("/")[-1]}_' +
os.path.splitext(os.path.basename(args.test_path))[0] + f'_{total}.jsonl'
)
official_preds_to_save = []
for prediction, title, question, pred_wikipedia_id, qid in zip(predictions, titles, questions, pred_wikipedia_ids, qids):
if ("wned" in pred_official_path or
"cweb" in pred_official_path or
"aidayago2" in pred_official_path):
answer = title[0][0]
else:
answer = prediction[0].strip(string.punctuation)
output = {
'answer': answer,
'provenance': [{'wikipedia_id': pred_wid_} for pred_wid in pred_wikipedia_id for pred_wid_ in pred_wid]
}
official_preds_to_save.append({
'id': qid,
'input': question,
'output': [output]
})
logger.info(f'Saving official prediction file to {pred_official_path}')
kilt_store_data(pred_official_path, official_preds_to_save)
assert '.jsonl' in args.kilt_gold_path, "kilt_gold_path should be .jsonl"
result = kilt_evaluate(
gold=args.kilt_gold_path,
guess=pred_official_path)
# logging results
result_to_logging = {
'accuracy':result['downstream']['accuracy'],
'f1':result['downstream']['f1'],
'KILT-accuracy':result['kilt']['KILT-accuracy'],
'KILT-f1':result['kilt']['KILT-f1'],
'Rprec':result['retrieval']['Rprec'],
'recall@5':result['retrieval']['recall@5']
}
logger.info(result_to_logging)
# make custom predictions
pred_out = {}
for i in range(len(predictions)):
# For debugging
if i < 3:
logger.info(f'{i+1}) {questions[i]}')
logger.info(f'=> groundtruths: {answers[i]}, top 5 prediction: {predictions[i][:5]}')
guess_answer = predictions[i][0]
gold_candidate_answers = answers[i]
local_accuracy = 0
if guess_answer in gold_candidate_answers:
local_accuracy = 1
pred_out[qids[i]] = {
'question': questions[i],
'answer': answers[i], 'prediction': predictions[i], 'score': scores[i], 'title': titles[i],
'evidence': evidences[i] if evidences is not None else '',
'em_top1': bool(local_accuracy),
}
# dump custom predictions
pred_path = os.path.join(
pred_dir, os.path.splitext(os.path.basename(args.test_path))[0] + f'_{total}.pred'
)
logger.info(f'Saving custom prediction file to {pred_path}')
with open(pred_path, 'w') as f:
json.dump(pred_out, f)
return result['retrieval']['Rprec'], result['retrieval']['recall@5'], result['kilt']['KILT-accuracy'], result['kilt']['KILT-f1']
def evaluate_results_psg(pred_path, args):
# Read prediction
my_pred = json.load(open(pred_path))
my_target = []
avg_len = []
for qid, pred in tqdm(enumerate(my_pred.values())):
my_dict = {"id": str(qid), "question": None, "answers": [], "ctxs": []}
# truncate
pred = {key: val[:args.psg_top_k] if key in ['evidence', 'title', 'se_pos', 'prediction'] else val for key, val in pred.items()}
# TODO: need to add id for predictions.pred
my_dict["question"] = pred["question"]
my_dict["answers"] = pred["answer"]
pred["title"] = [titles[0] for titles in pred["title"]]
assert len(set(pred["evidence"])) == len(pred["evidence"]) == len(pred["title"]), "Should use opt2 for aggregation"
# assert all(pr in evd for pr, evd in zip(pred["prediction"], pred["evidence"])) # prediction included TODO: fails when return_sent=True
# Pad up to top-k
if not(len(pred["prediction"]) == len(pred["evidence"]) == len(pred["title"]) == args.psg_top_k):
assert len(pred["prediction"]) == len(pred["evidence"]) == len(pred["title"]) < args.psg_top_k, \
(len(pred["prediction"]), len(pred["evidence"]), len(pred["title"]))
# logger.info(len(pred["prediction"]), len(pred["evidence"]), len(pred["title"]))
pred["evidence"] += [pred["evidence"][-1]] * (args.psg_top_k - len(pred["prediction"]))
pred["title"] += [pred["title"][-1]] * (args.psg_top_k - len(pred["prediction"]))
pred["se_pos"] += [pred["se_pos"][-1]] * (args.psg_top_k - len(pred["prediction"]))
pred["prediction"] += [pred["prediction"][-1]] * (args.psg_top_k - len(pred["prediction"]))
assert len(pred["prediction"]) == len(pred["evidence"]) == len(pred["title"]) == args.psg_top_k
# Used for markers
START = '<p_start>'
END = '<p_end>'
se_idxs = [[se_pos[0], max(se_pos[0], se_pos[1])] for se_pos in pred["se_pos"]]
# cut based on max psg len
my_dict["ctxs"] = [
{"title": title, "text": ' '.join(evd.split()[:args.max_psg_len])}
for evd, title in zip(pred["evidence"], pred["title"])
]
# Add markers for predicted phrases
if args.mark_phrase:
my_dict["ctxs"] = [
{"title": ctx["title"], "text": ctx["text"][:se[0]] + f"{START} " + ctx["text"][se[0]:se[1]] + f" {END}" + ctx["text"][se[1]:]}
for ctx, se in zip(my_dict["ctxs"], se_idxs)
]
my_target.append(my_dict)
avg_len += [len(ctx['text'].split()) for ctx in my_dict["ctxs"]]
assert len(my_dict["ctxs"]) == args.psg_top_k
assert all(len(ctx['text'].split()) <= args.max_psg_len for ctx in my_dict["ctxs"])
logger.info(f"avg psg len={sum(avg_len)/len(avg_len):.2f} for {len(my_pred)} preds")
out_file = os.path.join(
os.environ['SAVE_DIR'], os.path.basename(args.load_dir), 'pred',
os.path.splitext(os.path.basename(pred_path))[0] +
f'_{"sent" if args.return_sent else "psg"}-top{args.psg_top_k}{"_mark" if args.mark_phrase else ""}.json'
)
logger.info(f"dump to {out_file}")
json.dump(my_target, open(out_file, 'w'), indent=4)
# Call subprocess for evaluation
command = f'python scripts/postprocess/recall.py --k_values 1,5,20,100 --results_file {out_file} --ans_fn string'
subprocess.run(command.split(' '))
if __name__ == '__main__':
# See options in densephrases.options
options = Options()
options.add_model_options()
options.add_index_options()
options.add_retrieval_options()
options.add_data_options()
args = options.parse()
# Seed for reproducibility
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
if args.run_mode == 'eval':
evaluate(args)
elif args.run_mode == 'eval_all':
# Load MIPS & query encoder
mips = load_phrase_index(args)
device = 'cuda' if args.cuda else 'cpu'
query_encoder, tokenizer, _ = load_encoder(device, args)
# Evaluate all test sets
test_paths = args.test_path.split(',')
assert all(os.path.exists(path) for path in test_paths)
logger.info(f"Evaluating {len(test_paths)} datasets: {test_paths}")
ems = []
for test_path in test_paths:
logger.info(f"Evaluating {test_path}")
new_args = copy.deepcopy(args)
new_args.test_path = test_path
if 'trec' in test_path:
new_args.regex = True
logger.info('Enable regex for TREC')
if 'webq' in test_path:
new_args.candidate_path = os.path.join(os.environ['DATA_DIR'], 'open-qa/webq/freebase-entities.txt')
logger.info('Enable candidates for WebQuestions')
em, _, _, _ = evaluate(new_args, mips, query_encoder, tokenizer)
ems.append(f'{em:.1f}')
logger.info(f"Results of {args.load_dir}")
logger.info(f'Top1 EMs: {" ".join(ems)}')
else:
raise NotImplementedError