forked from qcri/sleep_awake_benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsleep_misc.py
805 lines (617 loc) · 32.4 KB
/
sleep_misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import pandas as pd
import numpy as np
from glob import glob
import os
from itertools import product
def load_dataset(path, useCache=False, saveCache=False, cacheName="hdf", ground_truth="stage"):
# Load cached dataset
if useCache:
store = pd.HDFStore(path)
dftrain = store["train"]
dftest = store["test"]
featnames = list(store["featnames"].values)
store.close()
return dftrain, dftest, featnames
# Or....load the dataset from scratch
tmp = []
for filename in glob(os.path.join(path, "*"))[:]:
print(filename)
dftmp = load_mesa_PSG(filename, ground_truth)
# creates a gt_block
gtTrue = dftmp[dftmp["gt"] == True]
if gtTrue.empty:
print("Ignoring file %s" % (filename))
continue
start_block = dftmp.index.get_loc(gtTrue.index[0])
end_block = dftmp.index.get_loc(gtTrue.index[-1])
dftmp["gt_sleep_block"] = make_one_block(dftmp["gt"], start_block, end_block)
featnames = get_features(dftmp)
tmp.append(dftmp)
wholedf = pd.concat(tmp)
del tmp
wholedf.reset_index(inplace=True, drop=True)
# Generates a binary version of the interval col
wholedf["binterval"] = wholedf["interval"].replace("ACTIVE", 0).replace("REST",1).replace("REST-S", 1)
# Splits uids into training and test sets.
test_proportion = 0.2
uids = wholedf.mesaid.unique()
np.random.seed(42)
np.random.shuffle(uids)
test_position = int(uids.shape[0] * test_proportion)
uids_test, uids_train = uids[:test_position], uids[test_position:]
# Splits dataset into training and test sets.
train_idx = wholedf[wholedf["mesaid"].apply(lambda x: x in uids_train)].index
dftrain = wholedf.iloc[train_idx].copy()
test_idx = wholedf[wholedf["mesaid"].apply(lambda x: x in uids_test)].index
dftest = wholedf.iloc[test_idx].copy()
if saveCache:
store = pd.HDFStore(cacheName)
store["train"] = dftrain
store["test"] = dftest
store["featnames"] = pd.Series(featnames)
store.close()
return dftrain, dftest, featnames
def rescore_models(df, models, tl_min_sleep=10, tl_min_awake=20):
"""
Increment a model with additional data from rescoring methods (e.g., Tudor Locke, Webster Rescoring Rules).
Directly applies rules to the input DF and returns the list of new cols created by this method.
"""
all_models = []
for model in models:
print("Creating new cols for alg %s..." % (model))
df[model] = df[model].astype(np.bool)
all_models.append(model)
df["tl_" + model] = tudor_locke(df[model], min_minutes_sleep=tl_min_sleep, min_minutes_awake=tl_min_awake)
df["resc_" + model] = webster_rescoring_rules(df[model])
df["resc_tl_" + model] = webster_rescoring_rules(df["tl_" + model])
df["tl_resc_" + model] = tudor_locke(df["tl_" + model], min_minutes_sleep=tl_min_sleep, min_minutes_awake=tl_min_awake)
df[model + "_max"] = selects_larger_interval(df[model])
df["tl_" + model + "_max"] = selects_larger_interval(df["tl_"+model])
df["resc_tl_" + model + "_max"] = selects_larger_interval(df["resc_tl_" + model])
all_models.extend(["tl_" + model, "resc_" + model, "resc_tl_" + model, "tl_resc_" + model, model+"_max", "tl_"+model+"_max","resc_tl_" + model+ "_max"])
print("Done!")
return all_models
def load_mesa_PSG(filename, ground_truth="stage"):
"""
Load Groundtruth information about sleep vs active
"""
df = pd.read_csv(filename)
df["actValue"] = df["activity"]
df["time"] = pd.to_datetime(df["linetime"])
if ground_truth == "stage":
df["gt"] = df["stage"] > 0
elif ground_truth == "interval":
df["gt"] = (df["interval"] != "ACTIVE").astype(int)
df = df[df["interval"] != "EXCLUDED"] # Need to check if this is the best to do it
df["active"] = (df["interval"] == "ACTIVE").astype(int)
return df
def summary_table(results):
"""
Function to make summary statistics such as mean and standard deviation for various evaluation metrics such as
accuracy, precision, recall etc
"""
values = {}
values["algs"] = []
for alg in results:
values["algs"].append(alg)
#values["ScoredMin"] = []
values["SEWholeDF"] = []
values["SEGTBlock"] = []
values["SESelfBlock"] = []
values["SESelfBlock5Min"] = []
values["TotalSleep"] = []
values["TotalSleepBlock"] = []
values["PercentSleep"] = []
values["PercentSleepBlock"] = []
values["DeltaStartBlock"] = []
values["DeltaEndBlock"] = []
for standardMetric in ["Accuracy", "Precision", "Recall", "F1", "~F1", "Specificity"]:
values[standardMetric] = []
values[standardMetric + "Block"] = []
print_format = "%.1f +- %.1f"
for alg in results:
#values["ScoredMin"].append("%.0f +- %.0f" % (results[alg]["ScoredMin"].mean(), results[alg]["ScoredMin"].std()))
values["SEWholeDF"].append(print_format % (100.*results[alg]["EfficiencyWholeDF"].mean(), 100.*results[alg]["EfficiencyWholeDF"].std()))
values["SEGTBlock"].append(print_format % (100.*results[alg]["EfficiencyGTBlock"].mean(), 100.*results[alg]["EfficiencyGTBlock"].std()))
values["SESelfBlock"].append(print_format % (100.*results[alg]["EfficiencySelfBlock"].mean(), 100.*results[alg]["EfficiencySelfBlock"].std()))
values["SESelfBlock5Min"].append(print_format % (100.*results[alg]["EfficiencySelfBlock5min"].mean(), 100.*results[alg]["EfficiencySelfBlock5min"].std()))
values["TotalSleep"].append(print_format % (results[alg]["TotalSleep"].mean(), results[alg]["TotalSleep"].std()))
values["TotalSleepBlock"].append(print_format % (results[alg]["TotalSleepBlock"].mean(), results[alg]["TotalSleepBlock"].std()))
values["PercentSleep"].append(print_format % (100.*results[alg]["PercentSleep"].mean(), 100.*results[alg]["PercentSleep"].std()))
values["PercentSleepBlock"].append(print_format % (100.*results[alg]["PercentSleepBlock"].mean(), 100.*results[alg]["PercentSleepBlock"].std()))
values["Accuracy"].append(print_format % (100.*results[alg]["AccAlg"].mean(), 100.*results[alg]["AccAlg"].std()))
values["AccuracyBlock"].append(print_format % (100.*results[alg]["AccBlock"].mean(), 100.*results[alg]["AccBlock"].std()))
values["Precision"].append(print_format % (100.*results[alg]["PrecAlg"].mean(), 100.*results[alg]["PrecAlg"].std()))
values["PrecisionBlock"].append(print_format % (100.*results[alg]["PrecBlock"].mean(), 100.*results[alg]["PrecBlock"].std()))
values["Recall"].append(print_format % (100.*results[alg]["RecAlg"].mean(), 100.*results[alg]["RecAlg"].std()))
values["RecallBlock"].append(print_format % (100.*results[alg]["RecBlock"].mean(), 100.*results[alg]["RecBlock"].std()))
values["F1"].append(print_format % (100.*results[alg]["F1Alg"].mean(), 100.*results[alg]["F1Alg"].std()))
values["F1Block"].append(print_format % (100.*results[alg]["F1Block"].mean(), 100.*results[alg]["F1Block"].std()))
values["~F1"].append(print_format % (100.*results[alg]["~F1Alg"].mean(), 100.*results[alg]["~F1Alg"].std()))
values["~F1Block"].append(print_format % (100.*results[alg]["~F1Block"].mean(), 100.*results[alg]["~F1Block"].std()))
values["Specificity"].append(print_format % (100.*results[alg]["SpecAlg"].mean(), 100.*results[alg]["SpecAlg"].std()))
values["SpecificityBlock"].append(print_format % (100.*results[alg]["SpecBlock"].mean(), 100.*results[alg]["SpecBlock"].std()))
values["DeltaStartBlock"].append("%s +- %s" % (results[alg]["DeltaStart"].mean().seconds, results[alg]["DeltaStart"].std().seconds))
values["DeltaEndBlock"].append("%s +- %s" % (results[alg]["DeltaEnd"].mean().seconds, results[alg]["DeltaEnd"].std().seconds))
#values["SleepEfficiency"].append("%.0f +- %.0f" % (results[alg]["SleepEfficiency"].mean(), results[alg]["SleepEfficiency"].std()))
#values["ScoredMin_std"].append()
return pd.DataFrame(values).set_index("algs")
def annotateSleep(d):
d["_noActivity_p1"] = d["_noActivity"].shift(1)
d["_sleepStarts"] = (d["_noActivity"] == True) & (d["_noActivity_p1"] == False)
d["_cumsleep"] = d["_noActivity"].cumsum()
d["_cumsleep_diff"] = (d["_noActivity"].cumsum().where(d["_sleepStarts"], np.nan) - 1.).fillna(method="pad").fillna(0.0)
d["_sleepmins"] = d["_cumsleep"] - d["_cumsleep_diff"]
d["_sleepmins"] = d["_sleepmins"].where(d["_noActivity"], 0.0 )
del d["_noActivity_p1"]
del d["_cumsleep"]
del d["_cumsleep_diff"]
del d["_sleepStarts"]
def annotateAwake(d):
d["_activity"] = ~d["_noActivity"]
d["_activity_p1"] = d["_activity"].shift(1)
d["_awakeStarts"] = (d["_activity"] == True) & (d["_activity_p1"] == False)
d["_cumawake"] = d["_activity"].cumsum()
d["_cumawake_diff"] = (d["_activity"].cumsum().where(d["_awakeStarts"], np.nan) - 1.).fillna(method="pad").fillna(0.0)
d["_awakemins"] = d["_cumawake"] - d["_cumawake_diff"]
d["_awakemins"] = d["_awakemins"].where(d["_activity"], 0.0 )
del d["_activity_p1"]
del d["_cumawake"]
del d["_cumawake_diff"]
del d["_awakeStarts"]
def define_state(df):
state = np.nan
if (df["_sleep+"] == 0) and (df["_awaken+"] == 0):
state = np.nan
elif (df["_sleep+"] == 1) and (df["_awaken+"] == 0):
state = "_sleeping"
elif (df["_sleep+"] == 0) and (df["_awaken+"] == 1):
state = "_awaken"
elif (df["_sleep+"] == 1) and (df["_awaken+"] == 1):
state = "_error"
return state
def set_sleep_thresholds(df, min_sleep, min_awaken):
df["_sleep+"] = (df["_sleepmins"] >= min_sleep).astype(int)
df["_awaken+"] = (df["_awakemins"] >= min_awaken).astype(int)
result = df[["_sleep+", "_awaken+"]].apply(define_state, axis=1).fillna(method="pad").fillna("_awaken")
result = result.replace("_sleeping", 1).replace("_awaken",0).replace("_error", -100)
del df["_sleep+"]
del df["_awaken+"]
return result.astype(np.int)
def time_based(df, min_sleep=15, min_awaken=30):
"""
Function used to different sleep from active using a pre-defined number of
minutes to sleep and to wake.
"""
df["_noActivity"] = df["actValue"] == 0
annotateAwake(df)
annotateSleep(df)
result = set_sleep_thresholds(df, min_sleep, min_awaken)
del df[u'_awakemins']
del df[u'_sleepmins']
del df[u'_activity']
del df["_noActivity"]
return result
def sazonov2(df):
"""
Sazonov formula as shown in Tilmanne et al. 2009 paper
"""
for w in range(1,10):
df["_w%d" % (w-1)] = df["actValue"].rolling(window=w, min_periods=1).max()
sazonov = 1.99604 - 0.1945 * df["_w0"] - 0.09746 * df["_w1"] - 0.09975 * df["_w2"] - 0.10194 * df["_w3"] - 0.08917 * df["_w4"] - 0.08108 * df["_w5"] - 0.07494 * df["_w6"] - 0.07300 * df["_w7"] - 0.10207 * df["_w8"]
for w in range(1,10):
del df["_w%d" % (w-1)]
sazonov = 1 / (1 + np.exp(-sazonov))
#return (sazonov >= 0.5).astype(int)
return sazonov, (sazonov >= 0.5).astype(int)
def kripke(df, scaler = 0.204):
"""
Kripke formula as shown in Kripke et al. 2010 paper
"""
for i in range(1,11):
df["_a-%d" % (i)] = df["activity"].shift(i).fillna(0.0)
df["_a+%d" % (i)] = df["activity"].shift(-i).fillna(0.0)
kripke = scaler * (0.0064 * df["_a-10"] + 0.0074 * df["_a-9"] + 0.0112 * df["_a-8"] + 0.0112 * df["_a-7"] + 0.0118 * df["_a-6"] + 0.0118 * df["_a-5"] + 0.0128 * df["_a-4"] + 0.0188 * df["_a-3"] + 0.0280 * df["_a-2"] + 0.0664 * df["_a-1"] + 0.0300 * df["activity"] + 0.0112 * df["_a+1"] + 0.0100 * df["_a+2"])
for i in range(1,11):
del df["_a+%d" % (i)]
del df["_a-%d" % (i)]
#return (kripke < 1.0).astype(int)
return kripke, (kripke < 1.0).astype(int)
def sazonov(df):
"""
Sazonov formula as shown in the original paper
"""
for w in range(1,6):
df["_w%d" % (w-1)] = df["actValue"].rolling(window=w, min_periods=1).max()
sazonov = 1.727 - 0.256 * df["_w0"] - 0.154 * df["_w1"] - 0.136 * df["_w2"] - 0.140 * df["_w3"] - 0.176 * df["_w4"]
for w in range(1,6):
del df["_w%d" % (w-1)]
#return (sazonov >= 0.5).astype(int)
return sazonov, (sazonov >= 0.5).astype(int)
def sadeh(df, min_value=0):
"""
Sadeh model for classifying sleep vs active
"""
window_past = 6
window_nat = 11
window_centered = 11
df["_mean"] = df["actValue"].rolling(window=window_centered, center=True, min_periods=1).mean()
df["_std"] = df["actValue"].rolling(window=window_past, min_periods=1).std()
df["_nat"] = ((df["actValue"] >= 50) & (df["actValue"] < 100)).rolling(window=window_nat, center=True, min_periods=1).sum()
df["_LocAct"] = (df["actValue"] + 1.).apply(np.log)
sadeh = (7.601 - 0.065 * df["_mean"] - 0.056 * df["_std"] - 0.0703 * df["_LocAct"] - 1.08 * df["_nat"])
del df["_mean"]
del df["_std"]
del df["_nat"]
del df["_LocAct"]
#return (sadeh > min_value).astype(int)
return sadeh, (sadeh > min_value).astype(int)
def oakley(df, threshold=80):
"""
Oakley method to class sleep vs active/awake
"""
for i in range(1,5):
df["_a-%d" % (i)] = df["activity"].shift(i).fillna(0.0)
df["_a+%d" % (i)] = df["activity"].shift(-i).fillna(0.0)
oakley = 0.04 * df["_a-4"] + 0.04 * df["_a-3"] + 0.20 * df["_a-2"] + 0.20 * df["_a-1"] + \
2.0 * df["activity"] + \
0.20 * df["_a+1"] + 0.20 * df["_a-2"] + 0.04 * df["_a-3"] + 0.04 * df["_a-4"]
for i in range(1,5):
del df["_a+%d" % (i)]
del df["_a-%d" % (i)]
#return (oakley <= threshold).astype(int)
return oakley, (oakley <= threshold).astype(int)
def tudor_locke(s, min_minutes_sleep = 5, min_minutes_awake = 10):
"""
****
TODO: missing time in between sleep onset and awake onset. In the original paper it is 160 minutes.
****
Tudor-Locke algorithm is based on the definition that multiple 'awake' and 'sleeping' periods
are allowed in a sleeping epoch. It aims to define pontual bedtime and wake_time based on simple rules.
The default implementation uses:
bedtime = After 5 minutes of no moviment
awaketime = after 10 minutes of moviment
"""
bedtime = s.rolling(window=min_minutes_sleep, center=False, min_periods=1).sum() == min_minutes_sleep
awaketime = (~s.astype(bool)).rolling(window=min_minutes_awake, center=False, min_periods=1).sum() == min_minutes_awake
bedtime = bedtime.replace(False, np.nan) + 1
awaketime = awaketime.replace(False, np.nan)
returncol = bedtime.combine(awaketime, lambda x1, x2: x1 if not np.isnan(x1) else x2)
returncol = returncol.fillna(method="ffill")
returncol = returncol - 1
returncol.fillna(0, inplace=True)
return returncol.astype(int)
def webster(df):
"""
Webster method to classify sleep from awake
"""
df["_A0"] = df["actValue"]
for i in range(1,5):
df["_A-%d" % (i)] = df["actValue"].shift(i).fillna(0.0)
for i in range(1,3):
df["_A+%d" % (i)] = df["actValue"].shift(-i).fillna(0.0)
w_m4, w_m3, w_m2, w_m1, w_0, w_p1, w_p2 = [0.15, 0.15, 0.15, 0.08, 0.21, 0.12, 0.13]
p = 0.025
webster = p * (w_m4 * df["_A-4"] + w_m3 * df["_A-3"] + w_m2 * df["_A-2"] + w_m1 * df["_A-1"] + w_0 * df["_A0"] + w_p1 * df["_A+1"] + w_p2 * df["_A+2"])
# Remove temporary variables
del df["_A0"]
for i in range(1,5):
del df["_A-%d" % (i)]
for i in range(1,3):
del df["_A+%d" % (i)]
#return (webster < 1.0).astype(int)
return webster, (webster < 1.0).astype(int)
def cole(df):
"""
Cole method to classify sleep vs awake
"""
df["_A0"] = df["actValue"]
for i in range(1,5):
df["_A-%d" % (i)] = df["actValue"].shift(i).fillna(0.0)
for i in range(1,3):
df["_A+%d" % (i)] = df["actValue"].shift(-i).fillna(0.0)
w_m4, w_m3, w_m2, w_m1, w_0, w_p1, w_p2 = [404, 598, 326, 441, 1408, 508, 350]
p = 0.00001
cole = p * (w_m4 * df["_A-4"] + w_m3 * df["_A-3"] + w_m2 * df["_A-2"] + w_m1 * df["_A-1"] + w_0 * df["_A0"] + w_p1 * df["_A+1"] + w_p2 * df["_A+2"])
# Remove temporary variables
del df["_A0"]
for i in range(1,5):
del df["_A-%d" % (i)]
for i in range(1,3):
del df["_A+%d" % (i)]
#return (cole < 1.0).astype(int)
return cole, (cole < 1.0).astype(int)
def non_wear_choi11(df):
# TODO: still needs testing and validation
df["_activity60win"] = df["_activity"].rolling(window=61, center=True, min_periods=1).sum()
df["_notWearingMin"] = df["_activity60win"] <= 2
df["_notWearing"] = df["_notWearingMin"].rolling(window=90, center=False, min_periods=1).sum()
df["notWearingDevice"] = (df["_notWearing"] == 90).astype(int)
del df["_notWearing"]
del df["_activity60win"]
del df["_notWearingMin"]
def min_run_length(series):
terminal = pd.Series([0])
diffs = pd.concat([terminal, series, terminal]).diff()
starts = np.where(diffs == 1)
ends = np.where(diffs == -1)
return [(e-s, (s, e-1)) for s, e in zip(starts[0], ends[0])
if e - s >= 2]
def selects_larger_interval(s):
intervals = min_run_length(s)
intervals = sorted(intervals, key= lambda x : x[0], reverse=True)
#print intervals
if not intervals:
# Could not find any interval. Just return
return pd.Series(data=0, index=s.index)
start, end = intervals[0][1]
result = pd.Series(data=0, index=s.index)
result.loc[start:end] = 1
return result
def webster_rescoring_rules(s, rescoring_rules="abcde"):
haveAppliedAnyOtherRule = False
if "a" in rescoring_rules or "A" in rescoring_rules:
# After at least 4 minutes scored as wake, next minute scored as sleep is rescored wake
#print "Processing rule A"
maskA = s.shift(1).rolling(window=4, center=False, min_periods=1).sum() > 0 # avoid including actual period
result = s.where(maskA, 0)
haveAppliedAnyOtherRule = True
if "b" in rescoring_rules or "B" in rescoring_rules:
# After at least 10 minutes scored as wake, the next 3 minutes scored as sleep are rescored wake
#print "Processing rule B"
if haveAppliedAnyOtherRule == True: # if this is true, I need to apply the next operation on the destination col
s = result
maskB = s.shift(1).rolling(window=10, center=False, min_periods=1).sum() > 0 # avoid including actual period
result = s.where(maskB, 0).where(maskB.shift(1), 0).where(maskB.shift(2), 0)
haveAppliedAnyOtherRule = True
if "c" in rescoring_rules or "C" in rescoring_rules:
# After at least 15 minutes scored as wake, the next 4 minutes scored as sleep are rescored as wake
#print "Processing rule C"
if haveAppliedAnyOtherRule == True: # if this is true, I need to apply the next operation on the destination col
s = result
maskC = s.shift(1).rolling(window=15, center=False, min_periods=1).sum() > 0 # avoid including actual period
result = s.where(maskC, 0).where(maskC.shift(1), 0).where(maskC.shift(2), 0).where(maskC.shift(3), 0)
haveAppliedAnyOtherRule = True
if "d" in rescoring_rules or "D" in rescoring_rules:
# 6 minutes or less scored as sleep surroundeed by at least 10 minutes (before or after) scored as wake are rescored wake
#print "Processing rule D"
if haveAppliedAnyOtherRule == True: # if this is true, I need to apply the next operation on the destination col
s = result
# First Part
maskD1 = s.shift(1).rolling(window=10, center=False, min_periods=1).sum() > 0 # avoid including actual period
tmpD1 = s.where(maskD1.shift(5), 0)
haveAppliedAnyOtherRule = True
# Second Part: sum the next 10 periods and replaces previous 6 in case they are all 0's
maskD2 = s.shift(-10).rolling(window=10, center=False, min_periods=1).sum() > 0 # avoid including actual period
tmpD2 = s.where(maskD2.shift(-5), 0)
result = tmpD1 & tmpD2
if "e" in rescoring_rules or "E" in rescoring_rules:
# 10 minutes or less scored as sleep surrounded by at least 20 minutes (before or after) scored as wake are rescored wake
#print "Processing rule E"
if haveAppliedAnyOtherRule == True: # if this is true, I need to apply the next operation on the destination col
s = result
# First Part
maskE1 = s.shift(1).rolling(window=20, center=False, min_periods=1).sum() > 0 # avoid including actual period
tmpE1 = s.where(maskE1.shift(9), 0)
# Second Part: sum the next 10 periods and replaces previous 6 in case they are all 0's
maskE2 = s.shift(-20).rolling(window=20, center=False, min_periods=1).sum() > 0 # avoid including actual period
tmpE2 = s.where(maskE2.shift(-9), 0)
result = tmpE1 & tmpE2
return result
def onset_after_X_minutes(s, X):
"""
Cole 92 defines this period as:
"sleep onset is the beginning of the first interval containing at least n minutes
scored as sleep stage 1 or greated with no more than 1 minute of wakefulness intervening
"""
__onset_candidate = s.rolling(window=X, center=False, min_periods=1).sum() >= (X-1)
# Gets the index of the first candidate...
if __onset_candidate.empty:
result = pd.Series(data=0, index=s.index)
return s.shape[0] - 1
# If there is no single candidate, returns.
else:
idx = __onset_candidate.idxmax() # Returns number to be used with 'df.loc' function
result = pd.Series(data=0, index=s.index)
#print "ONSET 1:", s.shape[0]
start_ilocation = s.index.get_loc(idx)
result.iloc[start_ilocation - (X - 2)] = 1
#print "ONSET: idx: %d, idx - X: %d " % (idx, idx-(X-2))
#print "ONSET 2:", s.shape[0]
return start_ilocation - (X - 2) # Returns the .iloc of the object
def twu_after_X_minutes(s, onset_idx, X):
"""
TWU stands for Time woke up (terrible name created by me)
Inspired in the Onset time definition made by Cole 92:
"sleep onset is the beginning of the first interval containing at least n minutes
scored as sleep stage 1 or greated with no more than 1 minute of wakefulness intervening
"""
# Transforms everything before onset_idx into NAN values
__filter = ~s.astype(bool)
__filter.loc[(s.index < s.index[onset_idx])] = np.nan
# Find candidates
__twu_candidate = __filter.rolling(window=X, center=False, min_periods=1).sum() >= (X-1)
# Gets the index of the first candidate... (already filtered everything before onset_idx)
if __twu_candidate.empty:
result = pd.Series(data=0, index=s.index)
#print "RETURNING the last position in TWU"
return result.shape[0] - 1 # TODO: maybe change to result.index[-1]
else:
idx = __twu_candidate.idxmax()
del __twu_candidate
result = pd.Series(data=0, index=s.index)
#print "IN TWU 1:", df.shape[0]
start_ilocation = s.index.get_loc(idx)
result.iloc[start_ilocation - (X - 2)] = 1
#print "TWU: idx: %d, idx - X: %d " % (start_ilocation, start_ilocation - (X - 2))
#print "IN TWU 2:", df.shape[0]
return start_ilocation - (X - 2)
def make_one_block(s, start_idx, end_idx):
"""
Start_idx and end_idx are LABELS (can be any data type), not position (only integers)
"""
result = pd.Series(data=0, index=s.index)
result.iloc[start_idx:end_idx] = 1
return result
def make_sleep_block(s, X_onset, X_twu):
"""
Usage: e.g. make_sleep_block(df, alg="sadeh", X_onset=20, X_twu=40, newcol="sadeh_block")
start_idx = onset_after_X_minutes(df, alg, "onset_" + alg, X = X_onset)
end_idx = twu_after_X_minutes(df, col=alg, onset_idx=start_idx, newcol="twu_" + alg, X=X_twu)
df[newcol] = make_one_block(df[alg], start_idx, end_idx)
"""
#print "Before onset:", df.shape[0]
start_idx = onset_after_X_minutes(s, X = X_onset)
#print "Before TWU:", df.shape[0]
end_idx = twu_after_X_minutes(s, onset_idx=start_idx, X=X_twu)
#print "Before finishing make_sleep_block. START: %d, END: %d, Shape: %d" % (start_idx, end_idx, df.shape[0])
return make_one_block(s, start_idx, end_idx)
def print_signals(df, cols, figsize=(16,12)):
if "gt" in cols:
df["gt"] = df["gt"].astype(int)
df[cols + ["time"]].plot(subplots=True, figsize=figsize, x ="time")
def get_features(df, winsize=20):
featnames = []
for winsize in range(1, winsize):
df["_mean_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).mean().fillna(0.0)
df["_mean_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).mean().fillna(0.0)
df["_median_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).median().fillna(0.0)
df["_median_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).median().fillna(0.0)
df["_std_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).std().fillna(0.0)
df["_std_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).std().fillna(0.0)
df["_max_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).max().fillna(0.0)
df["_max_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).max().fillna(0.0)
df["_min_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).min().fillna(0.0)
df["_min_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).min().fillna(0.0)
df["_var_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).var().fillna(0.0)
df["_var_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).var().fillna(0.0)
df["_nat_%d" % (winsize)] = ((df["actValue"] >= 50) & (df["actValue"] < 100)).rolling(window=winsize, center=False, min_periods=1).sum().fillna(0.0)
df["_nat_centered_%d" % (winsize)] = ((df["actValue"] >= 50) & (df["actValue"] < 100)).rolling(window=winsize, center=True, min_periods=1).sum().fillna(0.0)
df["_anyact_%d" % (winsize)] = (df["actValue"] > 0).rolling(window=winsize, center=False, min_periods=1).sum().fillna(0.0)
df["_anyact_centered_%d" % (winsize)] = (df["actValue"] > 0).rolling(window=winsize, center=True, min_periods=1).sum().fillna(0.0)
if winsize > 3:
df["_skew_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).skew().fillna(0.0)
df["_skew_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).skew().fillna(0.0)
#
df["_kurt_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=False, min_periods=1).kurt().fillna(0.0)
df["_kurt_centered_%d" % (winsize)] = df["actValue"].rolling(window=winsize, center=True, min_periods=1).kurt().fillna(0.0)
for variant in ["centered_", ""]:
featnames.append("_mean_%s%d" % (variant, winsize))
featnames.append("_median_%s%d" % (variant, winsize))
featnames.append("_max_%s%d" % (variant, winsize))
featnames.append("_min_%s%d" % (variant, winsize))
featnames.append("_std_%s%d" % (variant, winsize))
featnames.append("_var_%s%d" % (variant, winsize))
featnames.append("_nat_%s%d" % (variant,winsize))
featnames.append("_anyact_%s%d" % (variant,winsize))
if winsize > 3:
featnames.append("_kurt_%s%d" % (variant, winsize))
featnames.append("_skew_%s%d" % (variant, winsize))
df["_Act"] = (df["actValue"]).fillna(0.0)
df["_LocAct"] = (df["actValue"] + 1.).apply(np.log).fillna(0.0)
featnames.append("_LocAct")
featnames.append("_Act")
return featnames
def apply_formulas_to_psgfile(filename):
"""
Process a PSG file with basic scoring algorithms
"""
df = load_mesa_PSG(filename)
df["baselinesleep"] = 1
df["baselineawake"] = 0
df["time_based"] = time_based(df, min_sleep=15, min_awaken=30)
# This is the GT block:
gtTrue = df[df["gt"] == True]
start_block = df.index.get_loc(gtTrue.index[0])
end_block = df.index.get_loc(gtTrue.index[-1])
#print "Start:", start_block, "End:", end_block
df["gt_sleep_block"] = make_one_block(df["gt"], start_block, end_block)
if df[df["gt_sleep_block"] == True].empty:
print("**** ERROR: Ops...'gt_sleep_block' should not be EMPTY")
ERROR___
return []
df["p_sazonov"],df["sazonov"] = sazonov(df)
df["p_sazonov2"],df["sazonov2"] = sazonov2(df)
df["p_sadeh"],df["sadeh"] = sadeh(df)
df["p_cole"],df["cole"] = cole(df)
df["p_oakley10"],df["oakley10"] = oakley(df, 10)
df["p_oakley40"],df["oakley40"] = oakley(df, 40)
df["p_oakley80"],df["oakley80"] = oakley(df, 80)
df["p_kripke"],df["kripke"] = kripke(df)
df["p_webster"],df["webster"] = webster(df)
return df
def grid_search(df, function, parameters, eval_function):
"""
Use grid search for hyper-parameter optimization
"""
keys = parameters.keys()
meta_values = []
for key in keys:
meta_values.append( parameters[key] )
print(meta_values)
results = []
combinations = list(product(*meta_values))
print("Running %d combinations" % (len(combinations)))
for combnum, p in enumerate(combinations):
input_parameters = {}
for i, _ in enumerate(keys):
input_parameters[keys[i]] = p[i]
print("%d - Running grid search with %s" % (combnum, input_parameters))
grps = df.groupby("mesaid")
#df.groupby("mesaid")["gt","actValue"].apply(lambda s: function(s, **input_parameters))
r = []
for grp in grps:
tmp = grp[1].copy()
r.append(function(tmp, **input_parameters))
#print "Grp", grp[0], "Shape", tmp.shape
df["grid"] = pd.concat(r)
#df["grid"] = pd.concat(r).reset_index(drop=True).values
result = df.groupby("mesaid")[["grid","gt"]].apply(lambda x: eval_function(x["gt"],x["grid"])).mean()
input_parameters["result"] = result
print("...result: %.3f" % (result))
results.append(input_parameters)
del df["grid"]
return results
def resave_dftest(task):
print("...Loading Task %d dataset into memory..." % (task))
_, dftest, _ = load_dataset("hdf_task%d" % (task), useCache=True)
if "interval" in dftest and "binterval" not in dftest:
dftest["binterval"] = dftest["interval"].replace("ACTIVE", 0).replace("REST",1).replace("REST-S", 1)
dfoutname = "dftest_task%d.csv" % (task)
print("...Saving Task %d dataset to disk. Filename: %s ..." % (task, dfoutname))
dftest[["mesaid", "linetime", "marker", "interval", "binterval", "gt", "gt_sleep_block", "wake"]].to_csv(dfoutname, index=False)
print("...Done...")
def sleeping_in_previous_X_epochs_from_idx(gt, idx, X=30):
#print "Sum:", sum(gt.loc[idx-X:idx] > 0)
return sum(gt.loc[idx-X:idx] > 0) < 5
def sleeping_in_next_X_epochs_from_idx(gt, idx, X=30):
#print "Sum:", sum(gt.loc[idx:idx+X] > 0)
return sum(gt.loc[idx:idx+X] > 0) < 5
def get_marker_positions(m, gt):
mid = m.shape[0]/2
#print("Possible first half:\n", m[0:mid][m[0:mid] > 0])
candidates = m[0:mid][m[0:mid] > 0]
if candidates.empty:
# Just take the first value in the interval as the marker
idx_tail1_first_half = m.head(1).index[0]
else:
for i in range(1, candidates.shape[0] + 1):
# print i
idx_tail1_first_half = candidates.tail(i).head(1).index[0]
if sleeping_in_previous_X_epochs_from_idx(gt, idx_tail1_first_half):
break
#print("Picked", idx_tail1_first_half)
#print("Possible second half:\n", m[mid:][m[mid:] > 0])
candidates = m[mid:][m[mid:] > 0]
candidates = m[mid:][m[mid:] > 0]
if candidates.empty:
idx_head1_sec_half = m.tail(1).index[0]
else:
for i in range(1, candidates.shape[0] + 1):
# print i
idx_head1_sec_half = candidates.head(i).tail(1).index[0]
if sleeping_in_next_X_epochs_from_idx(gt, idx_head1_sec_half):
break
#print("Picked", idx_head1_sec_half)
#print("Final size", s.loc[idx_tail1_first_half:idx_head1_sec_half].shape[0], "instead of", s.shape[0])
return idx_tail1_first_half, idx_head1_sec_half