forked from qcri/sleep_awake_benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsleep_formulas.py
49 lines (38 loc) · 1.8 KB
/
sleep_formulas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas as pd
from glob import glob
import re
import sys
import os
from sleep_misc import load_dataset, apply_formulas_to_psgfile
TASK = int(sys.argv[1])
PATH_TO_FILES = "./datasets/task%d/*" % (TASK)
INPUTFILE="hdf_task%d" % (TASK)
SUMMARY_OUTPUT = "task%d_summary_formulas.csv" % (TASK)
OUTPUT = "task%d_formulas.csv" % (TASK)
print("...Loading Task %d dataset into memory..." % (TASK))
_, dftest, _ = load_dataset(INPUTFILE, useCache=True)
print("...Done...")
#Get unique test ids
uids_test = set(dftest.mesaid.unique())
def get_uid_from_filename(filename):
#Find a particular uid from a filename
return map(int, re.findall(r'\d+', filename))[0]
dfs = []
print("Found %d files in path %s" % (len(glob(PATH_TO_FILES)), PATH_TO_FILES))
for filename in glob(PATH_TO_FILES):
uid = get_uid_from_filename(os.path.basename(filename))
# Check uid present in the list of test uids
if uid not in uids_test:
continue
# Process only test file
print("Processing: %s" % (filename))
# Run the formula based physical models (no randomization required) on 20% test samples
dfs.append(apply_formulas_to_psgfile(filename))
formula_algs = ["time_based", "sazonov", "sazonov2", "sadeh", "cole", "kripke", "webster", "oakley10", "oakley40", "oakley80"]
p_formula_algs = ["p_sazonov", "p_sazonov2", "p_sadeh", "p_cole", "p_kripke", "p_webster", "p_oakley10", "p_oakley40", "p_oakley80"]
dfs = pd.concat(dfs)
dfs["gt_sleep_block"] = dfs["gt_sleep_block"].astype(int)
dfs["gt"] = dfs["gt"].astype(int)
dfs["actValue"] = dfs["actValue"].fillna(0.0).astype(int)
#Select columns mesaid, linetime, activity value, groundtruth along with formula values and write to a csv file for inspection
dfs[["mesaid","linetime","actValue","gt","gt_sleep_block"] + formula_algs + p_formula_algs].to_csv(OUTPUT, index=False)