forked from psboonstra/AdaptiveBayesianUpdates
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNAB_Stable.stan
85 lines (85 loc) · 4.25 KB
/
NAB_Stable.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
//Naive Adaptive Bayes (stable version)
data {
int<lower = 1> n_stan; // n_curr
int<lower = 1> p_stan; // number of original covariates
int<lower = 0> q_stan; // number of augmented (or added) covariates
int<lower = 0,upper = 1> y_stan[n_stan]; // outcome
matrix[n_stan, p_stan + q_stan] x_standardized_stan; // covariates (no intercept)
vector[p_stan] alpha_prior_mean_stan; // m_alpha
matrix[p_stan, p_stan] alpha_prior_cov_stan; // S_alpha
vector[p_stan] sqrt_eigenval_hist_var_stan; // sqrt of eigenvalues of S_alpha; D^1/2 in Equation (S5)
matrix[p_stan, p_stan] eigenvec_hist_var_stan; // eigenvectors of S_alpha; Q^T in Equation (S5)
real<lower = 0> local_dof_stan; // dof of pi(lambda), = 1
real<lower = 0> global_dof_stan; // dof of pi(tau), = 1
real<lower = 0> beta_orig_scale_stan; // c, Section 2
real<lower = 0> beta_aug_scale_stan; // c, Section 2
real<lower = 0> beta_aug_scale_tilde_stan; // tilde~c = 0.05, Section 4.1
real<lower = 0> slab_precision_stan; // 1/d^2, Section 2
vector<lower = 0>[p_stan] scale_to_variance225; //Equation (S5); equal to diag(S_alpha) / 225;
real<lower = 0, upper = 1> phi_mean_stan; // mean of phi in (0,1) using normal distribution truncated to [0,1].
real<lower = 0> phi_sd_stan; // sd of phi using normal distribution truncated to [0,1]
int<lower = 0,upper = 1> only_prior;//if 1, ignore the model and data and generate from the prior only
}
transformed data {
vector[p_stan] zero_vec;
zero_vec = rep_vector(0.0, p_stan);
}
parameters {
real mu;
vector[p_stan] beta_raw_orig; // unscaled
vector[q_stan] beta_raw_aug; // unscaled
real<lower = 0> eta;
vector<lower = 0>[q_stan] lambda_aug_tilde_sq; // tilde lambda^2
real<lower = 0> tau_glob;// tau
vector<lower = 0>[p_stan] lambda_orig;// lambda^o
vector<lower = 0>[q_stan] lambda_aug;// lambda^a
real<lower = 0, upper = 1> phi;// phi
}
transformed parameters {
vector[p_stan] normalized_beta; //entire LHS of Equation (S5)
vector[p_stan] beta_orig; // scaled
vector[q_stan] beta_aug; // scaled
vector[p_stan + q_stan] beta;
vector<lower = 0,upper = sqrt(1/slab_precision_stan)>[p_stan] theta_orig; // theta
vector<lower = 0,upper = sqrt(1/slab_precision_stan)>[q_stan] theta_aug; // theta
vector<lower = 0,upper = sqrt(1/min(scale_to_variance225))>[p_stan] hist_orig_scale;//Gamma in LHS of Eqn (S5)
matrix[p_stan,p_stan] normalizing_cov;// S_alpha * hist_orig_scale + Theta^o
real<lower = 0, upper = 1> phi_copy;// copy of phi
if(phi_sd_stan > 0) {
phi_copy = phi;
} else {
phi_copy = phi_mean_stan;
}
theta_orig = 1 ./ sqrt(slab_precision_stan + ((1 - phi_copy) ./ (tau_glob^2 * square(lambda_orig))));
theta_aug = 1 ./ sqrt(slab_precision_stan + ((1 - phi_copy) ./ (tau_glob^2 * square(lambda_aug))) + (phi_copy ./ (beta_aug_scale_tilde_stan^2 * lambda_aug_tilde_sq)));
beta_orig = theta_orig .* beta_raw_orig;
beta_aug = theta_aug .* beta_raw_aug;
beta = append_row(beta_orig, beta_aug);
hist_orig_scale = 1 ./ sqrt(scale_to_variance225 * (1 - phi_copy) + phi_copy / eta);
normalizing_cov = quad_form_diag(alpha_prior_cov_stan,hist_orig_scale);
for(i in 1:p_stan) {
normalizing_cov[i,i] = normalizing_cov[i,i] + theta_orig[i]^2;
}
normalized_beta = eigenvec_hist_var_stan * (beta_orig - alpha_prior_mean_stan) ./ hist_orig_scale;
}
model {
beta_raw_orig ~ normal(0.0, 1.0);
beta_raw_aug ~ normal(0.0, 1.0);
lambda_aug_tilde_sq ~ inv_gamma(0.5, 0.5);
eta ~ inv_gamma(2.5, 2.5);
tau_glob ~ student_t(global_dof_stan, 0.0, 1.0);
lambda_orig ~ student_t(local_dof_stan, 0.0, beta_orig_scale_stan);
lambda_aug ~ student_t(local_dof_stan, 0.0, beta_aug_scale_stan);
mu ~ logistic(0.0, 5.0);
if(phi_sd_stan > 0) {
phi ~ normal(phi_mean_stan, phi_sd_stan);
}
// Equation (S5) The next two lines together comprise the naive adaptive prior contribution
normalized_beta ~ normal(0.0, sqrt_eigenval_hist_var_stan);
// Scaling normalized_beta to be independent ends up dropping a necessary determinant calculation: we add that back in here:
target += -(1.0 * sum(log(hist_orig_scale)));
// Z_NAB (Normalizing constant)
target += -(1.0 * multi_normal_lpdf(alpha_prior_mean_stan|zero_vec, normalizing_cov));
if(only_prior == 0)
y_stan ~ bernoulli_logit(mu + x_standardized_stan * beta);
}