-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathelsa-type-algebra.el
351 lines (312 loc) · 14.6 KB
/
elsa-type-algebra.el
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
;;; elsa-type-algebra.el --- Elsa type algebra -*- lexical-binding: t -*-
(require 'eieio)
(eval-and-compile (setq eieio-backward-compatibility nil))
(require 'elsa-types)
(eval-and-compile
(defvar elsa-type-debug nil))
(defvar elsa-type-debug-depth 0)
(defmacro elsa-type-debug (msg-spec &rest body)
(declare (indent 1)
(debug ((stringp form &optional form) body)))
(if elsa-type-debug
`(progn
(cl-incf elsa-type-debug-depth)
(message (concat (make-string elsa-type-debug-depth 32)
,(car msg-spec))
,@(mapcar (lambda (x) `(elsa-type-describe ,x)) (cdr msg-spec)))
(prog1 ,@body
(cl-decf elsa-type-debug-depth)))
`(progn ,@body)))
(cl-defmethod elsa-type-sum ((this elsa-type) (other elsa-type))
"Basic primitive type sum."
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-type elsa-type " this other)
(elsa-type-normalize
(cond
((or (and (elsa-type-nil-p this) (elsa-type-t-p other))
(and (elsa-type-t-p this) (elsa-type-nil-p other)))
(elsa-type-bool))
((elsa-readonly-type-p this)
(elsa-type-normalize
(elsa-readonly-type :type (elsa-type-sum (oref this type) other))))
((elsa-type-composite-p other)
(elsa-type-sum other this))
((elsa-type-accept this other)
(clone this))
((elsa-type-accept other this)
(clone other))
((and (not (elsa-type-composite-p this))
(not (elsa-type-composite-p other)))
(elsa-sum-type :types (list this other)))
(t (let ((sum (elsa-sum-type :types (list this))))
(elsa-type-sum sum other)))))))
(cl-defmethod elsa-type-sum ((this elsa-readonly-type) (other elsa-readonly-type))
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-readonly-type elsa-readonly-type" this other)
(elsa-readonly-type :type (elsa-type-sum (oref this type) (oref other type)))))
(cl-defmethod elsa-type-sum ((this elsa-type-number) (other elsa-type-number))
"Numbers are handled in special way, see `elsa-type-number'"
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-type-number elsa-type-number" this other)
(cond
((and (elsa-type-float-p this) (elsa-type-int-p other))
(elsa-type-number))
((and (elsa-type-int-p this) (elsa-type-float-p other))
(elsa-type-number))
(t (cl-call-next-method)))))
(cl-defmethod elsa-type-sum ((this elsa-sum-type) (other elsa-sum-type))
"(A ∪ B ∪ ...) ∪ (C ∪ D ∪ ...) = A ∪ B ∪ C ∪ D ∪ ...
This is only for performance reasons, because we know we are
combining two unions, we don't have to unpack each argument of
first union against each of the second."
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-sum-type elsa-sum-type" this other)
(elsa-type-normalize
(let ((new-other nil)
(new-this nil))
;; remove unnecessary types from other
(-each (oref other types)
(lambda (type)
(unless (elsa-type-accept this type)
(push (clone type) new-other))))
;; remove unnecessary types from this
(let ((new-sum (elsa-sum-type :types new-other)))
(-each (oref this types)
(lambda (type)
(unless (elsa-type-accept new-sum type)
(push (clone type) new-this)))))
(elsa-sum-type :types (-concat (nreverse new-this) (nreverse new-other)))))))
(cl-defmethod elsa-type-sum ((this elsa-sum-type) (other elsa-diff-type))
"(A ∪ B) ∪ (C - D) = (A ∪ B ∪ C) - D"
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-sum-type elsa-diff-type" this other)
(elsa-type-normalize
(let ((diff-pos (oref other positive))
(diff-neg (oref other negative)))
(elsa-type-diff (elsa-type-sum this diff-pos) diff-neg)))))
(cl-defmethod elsa-type-sum ((this elsa-sum-type) (other elsa-type))
"(A ∪ B) ∪ C = (A ∪ C) ∪ (B ∪ C)"
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-sum-type elsa-type" this other)
(elsa-type-normalize
(cond
((not (elsa-type-composite-p other))
(elsa-type-sum this (elsa-sum-type :types (list other))))
((elsa-type-composite-p other)
(-reduce
#'elsa-type-sum
(-map (lambda (type) (elsa-type-sum type other)) (oref this types))))
(t
(if (elsa-type-accept this other)
(clone this)
(elsa-type-sum this (elsa-sum-type :types (list other)))))))))
(cl-defmethod elsa-type-sum ((this elsa-diff-type) (other elsa-type))
"(A - B) ∪ C = (A ∪ C) - (B - C).
When B and C are unrelated, the rule simplifies to:
(A - B) ∪ C = (A ∪ C) - B"
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-diff-type elsa-type" this other)
(let* ((pos (oref this positive))
(neg (oref this negative)))
(elsa-type-normalize
(cond
((elsa-type-is-empty-p (elsa-type-intersect neg other))
(elsa-diff-type :positive (elsa-type-sum pos other)
:negative neg))
(t (let ((new-pos (elsa-type-sum pos other))
(new-neg (elsa-type-diff neg other)))
(if (elsa-type-is-empty-p new-neg)
new-pos
(elsa-type-diff new-pos new-neg)))))))))
(cl-defmethod elsa-type-sum ((this elsa-intersection-type) (other elsa-type))
"(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)"
(elsa-type-debug ("(elsa-type-sum %s %s) elsa-intersection-type elsa-type" this other)
(cond
((-all? #'elsa-function-type-p (oref this types))
(elsa-sum-type :types (list this other)))
(t (elsa-type-normalize
(-reduce
#'elsa-type-intersect
(-map (lambda (type) (elsa-type-sum type other)) (oref this types))))))))
(cl-defmethod elsa-type-diff ((this elsa-type) other)
"Any base type without another is the same type, there is no intersection."
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-type t" this other)
(elsa-type-normalize
(cond
;; If this is contained in other, we are left with nothing.
((elsa-type-accept other this)
(elsa-type-empty))
((and (elsa-const-type-p other)
(elsa-type-accept this (oref other type)))
(elsa-diff-type :positive (clone this)
:negative (clone other)))
;; If the other is subset of this, there is no way to represent
;; this other than a raw difference.
((elsa-type-accept this other)
(elsa-diff-type :positive (clone this)
:negative (clone other)))
(t
(clone this))))))
(cl-defmethod elsa-type-diff ((_this elsa-type-mixed) other)
"Mixed is one with everything, so we need to subtract OTHER from the world.
However, mixed without (Mixed without something) is something.
This uses the rule that A - (A - B) = A ∩ B = B where A is
everything (Mixed)."
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-type-mixed t" _this other)
(cond
((elsa-diff-type-p other)
(let ((pos (oref other positive))
(neg (oref other negative)))
(cond
((elsa-type-mixed-p pos)
(clone neg))
(t
(elsa-type-normalize
(elsa-sum-type :types (list (elsa-type-normalize
(elsa-diff-type :negative (clone pos)))
(clone neg))))))))
(t
(elsa-type-normalize (elsa-diff-type :negative (clone other)))))))
(cl-defmethod elsa-type-diff ((this elsa-type-number) (other elsa-type-number))
"Numbers are handled in special way, see `elsa-type-number'."
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-type-number elsa-type-number" this other)
(cond
((and (elsa-type-number-p this) (elsa-type-int-p other))
(elsa-type-float))
((and (elsa-type-number-p this) (elsa-type-float-p other))
(elsa-type-int))
((and (elsa-type-int-p this) (elsa-type-float-p other))
(elsa-type-int))
(t (cl-call-next-method)))))
(cl-defmethod elsa-type-diff ((this elsa-type-bool) (other elsa-type-bool))
"Bool without T is Nil."
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-type-bool elsa-type-bool" this other)
(cond
((and (elsa-type-t-p this) (elsa-type-nil-p other))
(elsa-type-t))
((and (elsa-type-nil-p this) (elsa-type-t-p other))
(elsa-type-nil))
((and (elsa-type-bool-p this) (elsa-type-t-p other))
(elsa-type-nil))
((and (elsa-type-bool-p this) (elsa-type-nil-p other))
(elsa-type-t))
(t (cl-call-next-method)))))
(cl-defmethod elsa-type-diff ((this elsa-type) (other elsa-sum-type))
"A difference of a type and sum is THIS minus all the summed types."
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-type elsa-sum-type" this other)
(let ((new (clone this)))
(-reduce-from 'elsa-type-diff new (oref other types)))))
;; TODO: what about (or int string) - (const "foo"). This should
;; probably become (or int (diff string (const "foo")))
(cl-defmethod elsa-type-diff ((this elsa-sum-type) (other elsa-type))
"(A ∪ B) - C = (A - C) ∪ (B - C)."
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-sum-type elsa-type" this other)
(elsa-type-normalize
(cond
((not (elsa-type-composite-p other))
(let ((pos (-map
(lambda (type) (elsa-type-diff type other))
(oref this types))))
(elsa-diff-type
:positive (elsa-type-normalize (elsa-sum-type :types pos))
:negative other)))
(t (-reduce
#'elsa-type-sum
(-map (lambda (type) (elsa-type-diff type other)) (oref this types))))))))
(cl-defmethod elsa-type-diff ((this elsa-type) (other elsa-diff-type))
"This uses the rule that A - (B - C) = (A - B) ∪ (A ∩ B ∩ C)"
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-type elsa-diff-type" this other)
(if (not (elsa-type-composite-p this))
(elsa-type-normalize
(elsa-sum-type :types (list (elsa-type-diff (clone this)
(clone (oref other positive)))
(elsa-type-intersect-all
(list this (oref other positive) (oref other negative))))))
(cl-call-next-method))))
(cl-defmethod elsa-type-diff ((this elsa-diff-type) other)
"This uses the rule that (A - B) - C = A - (B ∪ C)"
(elsa-type-debug ("(elsa-type-diff %s %s) elsa-diff-type t" this other)
(elsa-type-normalize
(elsa-diff-type :positive (clone (oref this positive))
:negative (elsa-type-sum (oref this negative) other)))))
(cl-defmethod elsa-type-intersect ((this elsa-type) (other elsa-type))
"Basic primitive type intersection."
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(cond
((elsa-readonly-type-p this)
(elsa-type-normalize
(elsa-readonly-type :type (elsa-type-intersect (oref this type) other))))
((elsa-type-composite-p other)
(elsa-type-intersect other this))
((and (elsa-type-list-p this)
(or (elsa-type-bool-p other) (elsa-type-nil-p other)))
(elsa-type-nil))
((and (or (elsa-type-bool-p this) (elsa-type-nil-p this))
(elsa-type-list-p other))
(elsa-type-nil))
((elsa-type-accept this other)
(clone other))
((elsa-type-accept other this)
(clone this))
(t (elsa-type-empty)))))
(cl-defmethod elsa-type-intersect ((this elsa-function-type) (other elsa-function-type))
"An intersection of functions represents overloads.
A function can have multiple signatures and it is all of them at
the same time. For example, the same function can process
numbers or strings and return some (different) return values
based on the input type.
It is not correct to say that the function is one *or* the other,
because that only implies we are not certain which implementation
it is, but once determined it collapses to only one possible
signature. A function with overloads is always all of the
possible signatures."
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(if (elsa-type-equivalent-p this other)
(clone this)
(elsa-intersection-type :types (list this other)))))
(cl-defmethod elsa-type-intersect ((this elsa-type-number) (other elsa-type-number))
"Float and ints intersect to empty, other types use usual definition."
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(cond
((and (elsa-type-float-p this) (elsa-type-int-p other))
(elsa-type-empty))
((and (elsa-type-int-p this) (elsa-type-float-p other))
(elsa-type-empty))
(t (cl-call-next-method)))))
(cl-defmethod elsa-type-intersect ((this elsa-sum-type) (other elsa-type))
"(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)"
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(elsa-type-normalize
(-reduce
#'elsa-type-sum
(-map (lambda (type) (elsa-type-intersect type other)) (oref this types))))))
(cl-defmethod elsa-type-intersect ((this elsa-sum-type) (other elsa-function-type))
"Intersection of sum and function.
This is not recursively resolved because it leads to infinite
recursive call between sum and intersect."
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(elsa-type-normalize
(elsa-sum-type :types
(-map (lambda (type) (elsa-type-intersect type other))
(oref this types))))))
(cl-defmethod elsa-type-intersect ((this elsa-diff-type) (other elsa-type))
"(B - A) ∩ C = (B ∩ C) - A"
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(let ((pos (oref this positive))
(neg (oref this negative)))
(elsa-type-normalize
(elsa-type-diff (elsa-type-intersect pos other) (clone neg))))))
(cl-defmethod elsa-type-intersect ((this elsa-intersection-type) (other elsa-type))
"(A ∩ B) ∩ C = (A ∩ C) ∩ (B ∩ C)"
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(elsa-type-normalize
(-reduce
#'elsa-type-intersect
(-map (lambda (type) (elsa-type-intersect type other)) (oref this types))))))
(cl-defmethod elsa-type-intersect ((this elsa-intersection-type) (other elsa-function-type))
"(A ∩ B) ∩ C = (A ∩ C) ∩ (B ∩ C)"
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(elsa-type-normalize
(elsa-intersection-type :types (append (oref this types) (list other))))))
(cl-defmethod elsa-type-intersect ((this elsa-intersection-type) (other elsa-intersection-type))
"(A ∩ B ∩ ...) ∩ (C ∩ D ∩ ...) = A ∩ B ∩ C ∩ D ∩ ...
Intersection of two intersections in intersection of all types."
(elsa-type-debug ("(elsa-type-intersect %s %s)" this other)
(elsa-type-normalize
;; TODO: just as with sum, here we need to filter out repeated types.
(elsa-intersection-type :types (-concat (oref this types) (oref other types))))))
(provide 'elsa-type-algebra)
;;; elsa-type-algebra.el ends here