-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreduce_points_3d.py
227 lines (178 loc) · 5.91 KB
/
reduce_points_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
#
# May 2023, a quick python port by ekspla. https://github.com/ekspla/Douglas-Peucker_N
#
# Reduce gpx track points by using Douglas-Peucker N algorithm.
# (https://psimpl.sourceforge.net/douglas-peucker.html)
#
# Original version written in JavaScript by 330k. https://github.com/330k/gpx_tools
# (c) 2014-2023 Kei Misawa, MIT License.
import math
import sys
from pathlib import Path
import time
import gpxpy
import gpxpy.gpx
def reduce_points(gpxdocs, num_points=65535, write_file=True):
with gpxdocs.open('r') as gpx_file_r:
gpx = gpxpy.parse(gpx_file_r)
for track in gpx.tracks:
for segment in track.segments:
trkpts = segment.points
trkpts_length = len(trkpts)
if num_points < trkpts_length:
start_time = time.time()
segment.points = reduce_points3d(trkpts, num_points)
print(f'Time: {time.time() - start_time} s')
print(f'Reduce trkpt: from {trkpts_length} to {len(segment.points)}')
out_file = Path(str(gpxdocs)[:-4] + '_c.gpx') if write_file else None
finalize_gpx(gpx, out_file)
def finalize_gpx(gpx, outfile_path=None):
"""Output gpx xml to the outfile_path (or print if not specified).
Args:
gpx
outfile_path (optional): write gpx xml to the file or print (if None).
"""
if outfile_path is not None:
result = gpx.to_xml('1.1')
result_file = open(outfile_path, 'w')
result_file.write(result)
result_file.close()
else:
print(gpx.to_xml('1.1'))
def reduce_points3d(trkpts, target_points, flags_out=False):
"""Reduce gpx track points using Douglas-Peucker N
Args:
trkpts; an iterable object containing track points.
Each track point should have attributes of longitude/
latitude (in decimal degrees) and elevation (float).
target_points; number of points in integer
flags_out; True/False output flags if True.
Returns:
a list of track points if flags_out is False; reduced_points
else flags; a list of True/False flags
"""
queue = PriorityQueue()
count = 2
pts = [latlng2xyz(trkpt.latitude, trkpt.longitude, trkpt.elevation)
for trkpt in trkpts]
flags = [True, ] * len(trkpts)
farthest = find_farthest(pts, 0, len(pts) - 1)
queue.enqueue(farthest['dist'], farthest)
flags[0] = flags[-1] = False
while queue.size() and (count < target_points):
v = queue.dequeue()
flags[v['pos']] = False
count += 1
if (v['start'] + 2 <= v['pos']):
farthest = find_farthest(pts, v['start'], v['pos'])
queue.enqueue(farthest['dist'], farthest)
if (v['pos'] + 2 <= v['end']):
farthest = find_farthest(pts, v['pos'], v['end'])
queue.enqueue(farthest['dist'], farthest)
if flags_out:
return flags
else:
reduced_points = [trkpt for trkpt, flag in zip(trkpts, flags) if not flag]
return reduced_points
def latlng2xyz(lat, lng, h=0.0):
a = 6378137.0
f = 1 / 298.257223563
e2 = f * (2 - f)
f2 = 1 - e2
latrad = math.radians(lat)
lngrad = math.radians(lng)
sinlat = math.sin(latrad)
coslat = math.cos(latrad)
sinlng = math.sin(lngrad)
coslng = math.cos(lngrad)
w2 = 1.0 - sinlat * sinlat * e2
w = math.sqrt(w2)
N = a / w
return (
(N + h) * coslat * coslng,
(N + h) * coslat * sinlng,
(N * f2 + h) * sinlat,
)
def find_farthest(pts, start, end):
a = pts[start]
b = pts[end]
d = 0.0
m = -sys.float_info.max
c = -1
for i in range(start + 1, end):
d = segment_point_distance3d(*a, *b, *pts[i])
if m < d:
m = d
c = i
return {'start':start, 'end':end, 'pos':c, 'dist':m}
def segment_point_distance3d(ax, ay, az, bx, by, bz, px, py, pz):
"""Squared distance, actually"""
t = ((ax - bx) * (ax - px) + (ay - by) * (ay - py) + (az - bz) * (az - pz)) / ((ax - bx) * (ax - bx) + (ay - by) * (ay - by) + (az - bz) * (az - bz))
if t > 1:
t = 1
elif t > 0:
pass
else:
# // includes A == B
t = 0
x = ax - t * (ax - bx)
y = ay - t * (ay - by)
z = az - t * (az - bz)
#return math.hypot(x - px, y - py, z - pz) # for Python version => 3.8
return (x - px) * (x - px) + (y - py) * (y - py) + (z - pz) * (z - pz)
class PriorityQueue():
name = "Pairing Heap"
_size = 0
_root = None
def _merge(self, i, j):
if i is None: return j
if j is None: return i
if i['p'] < j['p']:
i, j = j, i
j['next'] = i['head']
i['head'] = j
return i
def _mergeList(self, s):
n = None
while s:
a = s
b = None
s = s['next']
a['next'] = None
if s:
b = s
s = s['next']
b['next'] = None
a = self._merge(a, b)
a['next'] = n
n = a
while n:
j = n
n = n['next']
s = self._merge(j, s)
return s
def enqueue(self, priority, value):
self._root = self._merge(self._root, {
'p': priority,
'v': value,
'next': None,
'head': None,
})
self._size += 1
def dequeue(self):
result = self._root['v']
self._root = self._mergeList(self._root['head'])
self._size -= 1
return result
def size(self):
return self._size
if __name__ == '__main__':
argvs = sys.argv
argc = len(argvs)
if argc < 2:
print(f'Usage: # python {argvs[0]} input_filename number_of_points\n')
sys.exit(0)
in_file = argvs[1]
points = 2000 if argc < 3 else int(argvs[2])
reduce_points(Path(in_file), points)