forked from aburkov/theMLbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensity_estimation.py
103 lines (79 loc) · 3.4 KB
/
density_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy as np
import scipy as sp
import matplotlib
import matplotlib.pyplot as plt
import math
from sklearn.neighbors import KernelDensity
import scipy.integrate as integrate
from sklearn.kernel_ridge import KernelRidge
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams.update({'font.size': 18})
mu1, sigma1 = 3.0, 1.0
mu2, sigma2 = 8.0, 1.5
def sample_points():
s1 = np.random.normal(mu1, sigma1, 50)
s2 = np.random.normal(mu2, sigma2, 50)
return list(s1) + list(s2)
# generate points used to plot
x_plot = np.linspace(0, 12, 100)
# generate points and keep a subset of them
x = sample_points()
colors = ['red', 'blue', 'orange', 'green']
lw = 2
def kernel(x1, x2, bi = 2.0):
z = (x1 - x2) / bi
return (1.0/math.sqrt(2.0 * 3.14)) * math.exp((-1.0/2.0)*(z**2))
def fb(xx, data, bi):
return (1/(len(data)*bi)) * sum([kernel(xx, xi, bi) for xi in data])
def fbi(i, data, bi):
data_minus_i = []
for ii in range(len(data)):
if i != ii:
data_minus_i.append(data[ii])
return (1/(len(data_minus_i)*bi)) * sum([kernel(data[i], xi, bi) for xi in data_minus_i])
def sum_pdf(x):
result = []
for i in range(len(x)):
result.append((sp.stats.norm.pdf(x, mu1, sigma1)[i] + sp.stats.norm.pdf(x, mu2, sigma2)[i])/2.0)
#result.append(sp.stats.norm.pdf(x, mu1, sigma1)[i])
return result
b = np.linspace(0.01, 3.0, 100)
score = []
for bi in b:
def fb2(xx):
return fb(xx, x, bi)**2
s = integrate.quad(fb2, -np.inf, np.inf)[0] - 2.0*np.mean([fbi(i, x, bi) for i in range(len(x))])
score.append(s)
plt.figure(1)
plt.plot(b,score)
plt.xlabel("$b$")
plt.ylabel("$l$")
plt.tight_layout()
plt.xticks(np.arange(0, 3.5, 0.5))
#plt.show()
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/density-estimation-loss.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/density-estimation-loss.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/density-estimation-loss.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
minb = [bi for bi, s in zip(b, score) if s == min(score)][0]
print minb
for count, degree in enumerate([round(minb, 2)] + [0.2, 2.0]):
plt.figure(count+2)
axes = plt.gca()
axes.set_xlim([0,12])
axes.set_ylim([0,0.3])
plt.xlabel("$x$")
plt.ylabel("pdf")
plt.scatter(x, [0.005] * len(x), color='navy', s=30, marker=2, label="training examples")
plt.plot(x_plot, [fb(xp ,x, degree) for xp in x_plot], color=colors[count], linewidth=lw, label="$\\hat{f}_b$, $b = " + str(degree) + "$")
plt.plot(x_plot,sum_pdf(x_plot), label="true pdf")
plt.legend(loc='upper right')
plt.tight_layout()
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/density-estimation-' + str(count) + '.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/density-estimation-' + str(count) + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/density-estimation-' + str(count) + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
plt.show()