This repository has been archived by the owner on Jun 27, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
66 lines (49 loc) · 1.84 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch.utils.data as data
import io
import random
import numpy as np
from os import listdir
from os.path import join
import scipy.misc
import PIL
from PIL import Image, ImageFilter
PIL.Image.MAX_IMAGES_PIXELS = None
def GaussianNoise(img, noise):
h, w = img.size
img_arr = scipy.misc.fromimage(img).astype(np.float32)
img_arr += scipy.random.normal(scale=noise, size=(w, h, 1))
img = scipy.misc.toimage(img_arr)
return img
def GaussianBlur(img, blur):
imgfilter = ImageFilter.GaussianBlur(radius=random.randint(0, 2*blur))
img = img.filter(imgfilter)
return img
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", "tif"])
def load_img(filepath, jpeg):
img = Image.open(filepath).convert('RGB')
if jpeg > 0:
buffer = io.BytesIO()
img.save(buffer, format='jpeg', quality=random.randrange(75-jpeg, 76)) # default quality=75
img = Image.open(buffer)
return img
class DatasetFromFolder(data.Dataset):
def __init__(self, image_dir, data_transform=None, jpeg=0, noise=0.0, blur=0):
super(DatasetFromFolder, self).__init__()
self.image_filenames = sorted([join(image_dir, x) for x in listdir(image_dir) if is_image_file(x)])
self.jpeg = jpeg
self.noise = noise
self.blur = blur
self.transform = data_transform
def __getitem__(self, index):
input = load_img(self.image_filenames[index], self.jpeg)
target = input.copy()
if self.noise > 0:
input = GaussianNoise(input, self.noise)
if self.blur > 0:
input = GaussianFilter(input, self.blur)
if self.transform:
input, target= self.transform([input, target])
return input, target
def __len__(self):
return len(self.image_filenames)