-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_structures.py
477 lines (376 loc) · 16 KB
/
data_structures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
"""
This code is based on DYGIE++'s codebase
"""
import json
import copy
import os
from collections import Counter
import numpy as np
import pdb
import torch
from torch.utils.data import DataLoader, TensorDataset
def fields_to_batches(d, keys_to_ignore=[]):
keys = [key for key in d.keys() if key not in keys_to_ignore]
lengths = [len(d[k]) for k in keys]
# print(keys)
# print(lengths)
# pdb.set_trace()
assert len(set(lengths)) == 1
length = lengths[0]
res = [{k: d[k][i] for k in keys} for i in range(length)]
return res
def get_sentence_of_span(span, sentence_starts, doc_tokens):
"""
Return the index of the sentence that the span is part of.
"""
# Inclusive sentence ends
sentence_ends = [x - 1 for x in sentence_starts[1:]] + [doc_tokens - 1]
in_between = [span[0] >= start and span[1] <= end
for start, end in zip(sentence_starts, sentence_ends)]
assert sum(in_between) == 1
the_sentence = in_between.index(True)
return the_sentence
class Dataset:
def __init__(self, json_file, pred_file=None, doc_range=None):
self.js = self._read(json_file, pred_file)
if doc_range is not None:
self.js = self.js[doc_range[0]:doc_range[1]]
self.documents = [Document(js) for js in self.js]
def update_from_js(self, js):
self.js = js
self.documents = [Document(js) for js in self.js]
def _read(self, json_file, pred_file=None):
gold_docs = [json.loads(line) for line in open(json_file)]
if pred_file is None:
return gold_docs
pred_docs = [json.loads(line) for line in open(pred_file)]
merged_docs = []
for gold, pred in zip(gold_docs, pred_docs):
assert gold["doc_id"] == pred["doc_id"]
assert gold["sentences"] == pred["sentences"]
merged = copy.deepcopy(gold)
for k, v in pred.items():
if "predicted" in k:
merged[k] = v
merged_docs.append(merged)
return merged_docs
def __getitem__(self, ix):
return self.documents[ix]
def __len__(self):
return len(self.documents)
class Document:
def __init__(self, js):
self._doc_key = js["doc_id"]
entries = fields_to_batches(js, ["doc_id", "doc_tokens","clusters", "predicted_clusters", "section_starts"])
sentence_lengths = [len(entry["sentences"]) for entry in entries]
sentence_starts = np.cumsum(sentence_lengths)
sentence_starts = np.roll(sentence_starts, 1)
sentence_starts[0] = 0
self.sentence_starts = sentence_starts
self.sentences = [Sentence(entry, sentence_start, sentence_ix)
for sentence_ix, (entry, sentence_start)
in enumerate(zip(entries, sentence_starts))]
if "clusters" in js:
self.clusters = [Cluster(entry, i, self)
for i, entry in enumerate(js["clusters"])]
if "predicted_clusters" in js:
self.predicted_clusters = [Cluster(entry, i, self)
for i, entry in enumerate(js["predicted_clusters"])]
def __repr__(self):
return "\n".join([str(i) + ": " + " ".join(sent.text) for i, sent in enumerate(self.sentences)])
def __getitem__(self, ix):
return self.sentences[ix]
def __len__(self):
return len(self.sentences)
def print_plaintext(self):
for sent in self:
print(" ".join(sent.text))
def find_cluster(self, entity, predicted=True):
"""
Search through erence clusters and return the one containing the query entity, if it's
part of a cluster. If we don't find a match, return None.
"""
clusters = self.predicted_clusters if predicted else self.clusters
for clust in clusters:
for entry in clust:
if entry.span == entity.span:
return clust
return None
@property
def n_tokens(self):
return sum([len(sent) for sent in self.sentences])
class Sentence:
def __init__(self, entry, sentence_start, sentence_ix):
self.sentence_start = sentence_start
self.text = entry["sentences"]
self.sentence_ix = sentence_ix
# Gold
if "ner_flavor" in entry:
self.ner = [NER(this_ner, self.text, sentence_start, flavor=this_flavor)
for this_ner, this_flavor in zip(entry["ner"], entry["ner_flavor"])]
elif "ner" in entry:
self.ner = [NER(this_ner, self.text, sentence_start)
for this_ner in entry["ner"]]
if "relations" in entry:
self.relations = [Relation(this_relation, self.text, sentence_start) for
this_relation in entry["relations"]]
if "events" in entry:
self.events = Events(entry["events"], self.text, sentence_start)
# Predicted
if "predicted_ner" in entry:
self.predicted_ner = [NER(this_ner, self.text, sentence_start, flavor=None) for
this_ner in entry["predicted_ner"]]
if "predicted_relations" in entry:
self.predicted_relations = [Relation(this_relation, self.text, sentence_start) for
this_relation in entry["predicted_relations"]]
if "predicted_events" in entry:
self.predicted_events = Events(entry["predicted_events"], self.text, sentence_start)
# Top spans
if "top_spans" in entry:
self.top_spans = [NER(this_ner, self.text, sentence_start, flavor=None) for
this_ner in entry["top_spans"]]
def __repr__(self):
the_text = " ".join(self.text)
the_lengths = np.array([len(x) for x in self.text])
tok_ixs = ""
for i, offset in enumerate(the_lengths):
true_offset = offset if i < 10 else offset - 1
tok_ixs += str(i)
tok_ixs += " " * true_offset
return the_text + "\n" + tok_ixs
def __len__(self):
return len(self.text)
def get_flavor(self, argument):
the_ner = [x for x in self.ner if x.span == argument.span]
if len(the_ner) > 1:
print("Weird")
if the_ner:
the_flavor = the_ner[0].flavor
else:
the_flavor = None
return the_flavor
class Span:
def __init__(self, start, end, text, sentence_start):
self.start_doc = start
self.end_doc = end
self.span_doc = (self.start_doc, self.end_doc)
self.start_sent = start - sentence_start
self.end_sent = end - sentence_start
self.span_sent = (self.start_sent, self.end_sent)
self.text = text[self.start_sent:self.end_sent + 1]
def __repr__(self):
return str((self.start_sent, self.end_sent, self.text))
def __eq__(self, other):
return (self.span_doc == other.span_doc and
self.span_sent == other.span_sent and
self.text == other.text)
def __hash__(self):
tup = self.span_doc + self.span_sent + (" ".join(self.text),)
return hash(tup)
class Token:
def __init__(self, ix, text, sentence_start):
self.ix_doc = ix
self.ix_sent = ix - sentence_start
self.text = text[self.ix_sent]
def __repr__(self):
return str((self.ix_sent, self.text))
class Trigger:
def __init__(self, token, label):
self.token = token
self.label = label
def __repr__(self):
return self.token.__repr__()[:-1] + ", " + self.label + ")"
class Argument:
def __init__(self, span, role, event_type):
self.span = span
self.role = role
self.event_type = event_type
def __repr__(self):
return self.span.__repr__()[:-1] + ", " + self.event_type + ", " + self.role + ")"
def __eq__(self, other):
return (self.span == other.span and
self.role == other.role and
self.event_type == other.event_type)
def __hash__(self):
return self.span.__hash__() + hash((self.role, self.event_type))
class NER:
def __init__(self, ner, text, sentence_start, flavor=None):
self.span = Span(ner[0], ner[1], text, sentence_start)
self.label = ner[2]
self.flavor = flavor
def __repr__(self):
return self.span.__repr__() + ": " + self.label
def __eq__(self, other):
return (self.span == other.span and
self.label == other.label and
self.flavor == other.flavor)
class Relation:
def __init__(self, relation, text, sentence_start):
start1, end1 = relation[0], relation[1]
start2, end2 = relation[2], relation[3]
label = relation[4]
span1 = Span(start1, end1, text, sentence_start)
span2 = Span(start2, end2, text, sentence_start)
self.pair = (span1, span2)
self.label = label
def __repr__(self):
return self.pair[0].__repr__() + ", " + self.pair[1].__repr__() + ": " + self.label
def __eq__(self, other):
return (self.pair == other.pair) and (self.label == other.label)
class AtomicRelation:
def __init__(self, ent0, ent1, label):
self.ent0 = ent0
self.ent1 = ent1
self.label = label
@classmethod
def from_relation(cls, relation):
ent0 = " ".join(relation.pair[0].text)
ent1 = " ".join(relation.pair[1].text)
label = relation.label
return cls(ent0, ent1, label)
def __repr__(self):
return f"({self.ent0} | {self.ent1} | {self.label})"
class Event:
def __init__(self, event, text, sentence_start):
trig = event[0]
args = event[1:]
trigger_token = Token(trig[0], text, sentence_start)
self.trigger = Trigger(trigger_token, trig[1])
self.arguments = []
for arg in args:
span = Span(arg[0], arg[1], text, sentence_start)
self.arguments.append(Argument(span, arg[2], self.trigger.label))
def __repr__(self):
res = "<"
res += self.trigger.__repr__() + ":\n"
for arg in self.arguments:
res += 6 * " " + arg.__repr__() + ";\n"
res = res[:-2] + ">"
return res
class Events:
def __init__(self, events_json, text, sentence_start):
self.event_list = [Event(this_event, text, sentence_start) for this_event in events_json]
self.triggers = set([event.trigger for event in self.event_list])
self.arguments = set([arg for event in self.event_list for arg in event.arguments])
def __len__(self):
return len(self.event_list)
def __getitem__(self, i):
return self.event_list[i]
def __repr__(self):
return "\n\n".join([event.__repr__() for event in self.event_list])
def span_matches(self, argument):
return set([candidate for candidate in self.arguments
if candidate.span.span_sent == argument.span.span_sent])
def event_type_matches(self, argument):
return set([candidate for candidate in self.span_matches(argument)
if candidate.event_type == argument.event_type])
def matches_except_event_type(self, argument):
matched = [candidate for candidate in self.span_matches(argument)
if candidate.event_type != argument.event_type
and candidate.role == argument.role]
return set(matched)
def exact_match(self, argument):
for candidate in self.arguments:
if candidate == argument:
return True
return False
class Cluster:
def __init__(self, cluster, cluster_id, document):
members = []
for entry in cluster:
sentence_ix = get_sentence_of_span(entry, document.sentence_starts, document.n_tokens)
sentence = document[sentence_ix]
span = Span(entry[0], entry[1], sentence.text, sentence.sentence_start)
ners = [x for x in sentence.ner if x.span == span]
assert len(ners) <= 1
ner = ners[0] if len(ners) == 1 else None
to_append = ClusterMember(span, ner, sentence, cluster_id)
members.append(to_append)
self.members = members
self.cluster_id = cluster_id
def __repr__(self):
return f"{self.cluster_id}: " + self.members.__repr__()
def __getitem__(self, ix):
return self.members[ix]
class ClusterMember:
def __init__(self, span, ner, sentence, cluster_id):
self.span = span
self.ner = ner
self.sentence = sentence
self.cluster_id = cluster_id
def __repr__(self):
return f"<{self.sentence.sentence_ix}> " + self.span.__repr__()
####################
# Code to do evaluation of predictions for a loaded dataset.
def safe_div(num, denom):
if denom > 0:
return num / denom
else:
return 0
def compute_f1(predicted, gold, matched):
# F1 score.
precision = safe_div(matched, predicted)
recall = safe_div(matched, gold)
f1 = safe_div(2 * precision * recall, precision + recall)
return dict(precision=precision, recall=recall, f1=f1)
def evaluate_sent(sent, counts):
correct_ner = set()
# Entities.
counts["ner_gold"] += len(sent.ner)
counts["ner_predicted"] += len(sent.predicted_ner)
for prediction in sent.predicted_ner:
if any([prediction == actual for actual in sent.ner]):
counts["ner_matched"] += 1
correct_ner.add(prediction.span)
# Relations.
counts["relations_gold"] += len(sent.relations)
counts["relations_predicted"] += len(sent.predicted_relations)
for prediction in sent.predicted_relations:
if any([prediction == actual for actual in sent.relations]):
counts["relations_matched"] += 1
if (prediction.pair[0] in correct_ner) and (prediction.pair[1] in correct_ner):
counts["strict_relations_matched"] += 1
# Return the updated counts.
return counts
def evaluate_predictions(dataset):
counts = Counter()
for doc in dataset:
for sent in doc:
counts = evaluate_sent(sent, counts)
scores_ner = compute_f1(
counts["ner_predicted"], counts["ner_gold"], counts["ner_matched"])
scores_relations = compute_f1(
counts["relations_predicted"], counts["relations_gold"], counts["relations_matched"])
scores_strict_relations = compute_f1(
counts["relations_predicted"], counts["relations_gold"], counts["strict_relations_matched"])
return dict(ner=scores_ner, relation=scores_relations, strict_relation=scores_strict_relations)
def analyze_relation_coverage(dataset):
def overlap(s1, s2):
if s2.start_sent >= s1.start_sent and s2.start_sent <= s1.end_sent:
return True
if s2.end_sent >= s1.start_sent and s2.end_sent <= s1.end_sent:
return True
return False
nrel_gold = 0
nrel_pred_cover = 0
nrel_top_cover = 0
npair_pred = 0
npair_top = 0
nrel_overlap = 0
for d in dataset:
for s in d:
pred = set([ner.span for ner in s.predicted_ner])
top = set([ner.span for ner in s.top_spans])
npair_pred += len(s.predicted_ner) * (len(s.predicted_ner) - 1)
npair_top += len(s.top_spans) * (len(s.top_spans) - 1)
for r in s.relations:
nrel_gold += 1
if (r.pair[0] in pred) and (r.pair[1] in pred):
nrel_pred_cover += 1
if (r.pair[0] in top) and (r.pair[1] in top):
nrel_top_cover += 1
if overlap(r.pair[0], r.pair[1]):
nrel_overlap += 1
print('Coverage by predicted entities: %.3f (%d / %d), #candidates: %d'%(nrel_pred_cover/nrel_gold*100.0, nrel_pred_cover, nrel_gold, npair_pred))
print('Coverage by top 0.4 spans: %.3f (%d / %d), #candidates: %d'%(nrel_top_cover/nrel_gold*100.0, nrel_top_cover, nrel_gold, npair_top))
print('Overlap: %.3f (%d / %d)'%(nrel_overlap / nrel_gold * 100.0, nrel_overlap, nrel_gold))