-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathExp3.py
345 lines (313 loc) · 12.6 KB
/
Exp3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
#!/usr/bin/env python
from pylab import *
from mpl_toolkits.mplot3d import axes3d, Axes3D
from scipy.integrate import dblquad
from pendulum import *
policy = inverted_pendulum_expert_policy()
Q = lambda sa: squeeze(dot(inverted_pendulum_expert_omega.transpose(), inverted_pendulum_phi(sa)))
def hatR(state):
next_state = inverted_pendulum_next_state(state,policy(state))
next_action = policy(next_state)
sa = hstack([state,policy(state)])
sa_dash = hstack([next_state,next_action])
return Q(sa)-GAMMA*Q(sa_dash)
vhatR = non_scalar_vectorize(hatR,(2,),(1,1))
pos = linspace(-pi,pi,30)
speed = linspace(-pi,pi,30)
pos,speed=meshgrid(pos,speed)
S = zip_stack(pos,speed)
actions = policy(S)
#Z = Q(zip_stack(pos,speed,actions))
Z = squeeze(vhatR(zip_stack(pos,speed)))
Z.shape
figure()
contourf(pos,speed,Z,50)
colorbar()
# <codecell>
data = inverted_pendulum_trace(policy, run_length=100, initial_state=inverted_pendulum_expert_distribution_sample)
# <codecell>
#CSI, normal
s=data[:,:2]
a=data[:,2]
from sklearn import svm
clf = svm.SVC(C=1000., probability=True)
clf.fit(s, a)
clf_predict= lambda state : clf.predict(squeeze(state))
vpredict = non_scalar_vectorize( clf_predict, (2,), (1,1) )
pi_c = lambda state: vpredict(state).reshape(state.shape[:-1]+(1,))
clf_score = lambda sa : squeeze(clf.predict_proba(squeeze(sa[:2])))[sa[-1]]
vscore = non_scalar_vectorize( clf_score,(3,),(1,1) )
q = lambda sa: vscore(sa).reshape(sa.shape[:-1])
##DEBUG
with open('classification.obj', 'wb') as output:
pickle.dump(clf, output, pickle.HIGHEST_PROTOCOL)
##END DEBUG
column_shape = (len(data),1)
s = data[:,0:2]
a = data[:,2].reshape(column_shape)
sa = data[:,0:3]
s_dash = data[:,3:5]
a_dash = pi_c(s_dash).reshape(column_shape)
sa_dash = hstack([s_dash,a_dash])
hat_r = (q(sa)-GAMMA*q(sa_dash)).reshape(column_shape)
r_min = min(hat_r)-1.*ones(column_shape)
regression_input_matrices = [hstack([s,action*ones(column_shape)]) for action in ACTION_SPACE]
def add_output_column( reg_mat ):
actions = reg_mat[:,-1].reshape(column_shape)
hat_r_bool_table = array(actions==a)
r_min_bool_table = array(hat_r_bool_table==False) #"not hat_r_bool_table" does not work as I expected
output_column = hat_r_bool_table*hat_r+r_min_bool_table*r_min
return hstack([reg_mat,output_column])
regression_matrix = vstack(map(add_output_column,regression_input_matrices))
#Régression
from sklearn.svm import SVR
y = regression_matrix[:,-1]
X = regression_matrix[:,:-1]
reg = SVR(C=1.0, epsilon=0.2)
reg.fit(X, y)
CSI_reward = lambda sas:reg.predict(sas[:3])[0]
vCSI_reward = non_scalar_vectorize( CSI_reward, (5,),(1,1) )
data_for_lspi = inverted_pendulum_random_trace(reward=CSI_reward)
policy_CSI,omega_CSI = policy,omega = lspi( data_for_lspi, s_dim=2,a_dim=1, A=ACTION_SPACE, phi=inverted_pendulum_phi, phi_dim=30, iterations_max=20 )
savetxt("omega_CSI.mat",omega_CSI)
# <codecell>
#CSI, sur S seul
s=data[:,:2]
a=data[:,2]
from sklearn import svm
clf = svm.SVC(C=1000., probability=True)
clf.fit(s, a)
clf_predict= lambda state : clf.predict(squeeze(state))
vpredict = non_scalar_vectorize( clf_predict, (2,), (1,1) )
pi_c = lambda state: vpredict(state).reshape(state.shape[:-1]+(1,))
clf_score = lambda sa : squeeze(clf.predict_proba(squeeze(sa[:2])))[sa[-1]]
vscore = non_scalar_vectorize( clf_score,(3,),(1,1) )
q = lambda sa: vscore(sa).reshape(sa.shape[:-1])
##DEBUG
with open('classification.obj', 'wb') as output:
pickle.dump(clf, output, pickle.HIGHEST_PROTOCOL)
##END DEBUG
column_shape = (len(data),1)
s = data[:,0:2]
a = data[:,2].reshape(column_shape)
sa = data[:,0:3]
s_dash = data[:,3:5]
a_dash = pi_c(s_dash).reshape(column_shape)
sa_dash = hstack([s_dash,a_dash])
hat_r = (q(sa)-GAMMA*q(sa_dash)).reshape(column_shape)
regression_matrix = hstack([s,hat_r])
#Régression
from sklearn.svm import SVR
y = regression_matrix[:,-1]
X = regression_matrix[:,:-1]
reg = SVR(C=1.0, epsilon=0.2)
reg.fit(X, y)
CSI_reward = lambda sas:reg.predict(sas[:2])[0]
vCSI_reward = non_scalar_vectorize( CSI_reward, (5,),(1,1) )
data_for_lspi = inverted_pendulum_random_trace(reward=CSI_reward)
policy_CSI,omega_CSI = policy,omega = lspi( data_for_lspi, s_dim=2,a_dim=1, A=ACTION_SPACE, phi=inverted_pendulum_phi, phi_dim=30, iterations_max=20 )
savetxt("omega_CSI.mat",omega_CSI)
# <codecell>
#CSI, normal
s=data[:,:2]
a=data[:,2]
from sklearn import svm
clf = svm.SVC(C=1000., kernel='linear',probability=True)
clf.fit(inverted_pendulum_psi(s).reshape((100,10)), a)
clf_predict= lambda state : clf.predict(squeeze(inverted_pendulum_psi(state)))
vpredict = non_scalar_vectorize( clf_predict, (2,), (1,1) )
pi_c = lambda state: vpredict(state).reshape(state.shape[:-1]+(1,))
clf_score = lambda sa : squeeze(clf.predict_proba(squeeze(inverted_pendulum_psi(sa[:2]))))[sa[-1]]
vscore = non_scalar_vectorize( clf_score,(3,),(1,1) )
q = lambda sa: vscore(sa).reshape(sa.shape[:-1])
##DEBUG
with open('classification.obj', 'wb') as output:
pickle.dump(clf, output, pickle.HIGHEST_PROTOCOL)
##END DEBUG
column_shape = (len(data),1)
s = data[:,0:2]
a = data[:,2].reshape(column_shape)
sa = data[:,0:3]
s_dash = data[:,3:5]
a_dash = pi_c(s_dash).reshape(column_shape)
sa_dash = hstack([s_dash,a_dash])
hat_r = (q(sa)-GAMMA*q(sa_dash)).reshape(column_shape)
r_min = min(hat_r)#-0.*ones(column_shape)
regression_input_matrices = [hstack([s,action*ones(column_shape)]) for action in ACTION_SPACE]
def add_output_column( reg_mat ):
actions = reg_mat[:,-1].reshape(column_shape)
hat_r_bool_table = array(actions==a)
r_min_bool_table = array(hat_r_bool_table==False) #"not hat_r_bool_table" does not work as I expected
output_column = hat_r_bool_table*hat_r+r_min_bool_table*r_min
return hstack([reg_mat,output_column])
regression_matrix = vstack(map(add_output_column,regression_input_matrices))
##SANS HEURISTIQUES
#regression_matrix = hstack([sa,hat_r])
#Régression
from sklearn.svm import SVR
y = regression_matrix[:,-1]
X = regression_matrix[:,:-1]
#reg = SVR(C=1000.0, epsilon=.5, kernel='rbf')
#reg = SVR()
reg = SVR(kernel='linear')
reg.fit(inverted_pendulum_phi(X).reshape((300,30)), y)
#CSI_reward = lambda sas:reg.predict(squeeze(inverted_pendulum_phi(sas[:3])))[0]
CSI_reward = lambda sas:q(sas[:3])
vCSI_reward = non_scalar_vectorize( CSI_reward, (5,),(1,1) )
data_for_lspi = inverted_pendulum_random_trace(reward=CSI_reward)
policy_CSI,omega_CSI = policy,omega = lspi( data_for_lspi, s_dim=2,a_dim=1, A=ACTION_SPACE, phi=inverted_pendulum_phi, phi_dim=30, iterations_max=20 )
savetxt("omega_CSI.mat",omega_CSI)
#On plotte les rewards en fonction de l'action
for action in ACTION_SPACE:
sr = array([l for l in regression_matrix if l[2]==action])
R = lambda p,s: squeeze( vCSI_reward(zip_stack(p,s,action*ones(p.shape),p,s)))
pos = linspace(-pi,pi,30)
speed = linspace(-pi,pi,30)
pos,speed = meshgrid(pos,speed)
Z = R(pos,speed)
figure()
contourf(pos,speed,Z,50)
scatter(sr[:,0],sr[:,1],s=20,c=sr[:,3], marker = 'o', )#cmap = cm.jet );
clim(vmin=min(Z.reshape(-1)),vmax=max(Z.reshape(-1)))
colorbar()
def mean_reward(s,p):
actions = [a*ones(s.shape) for a in ACTION_SPACE]
matrices = [zip_stack(s,p,a,s,p) for a in actions]
return mean(array([squeeze(vCSI_reward(m)) for m in matrices]), axis=0)
inverted_pendulum_plot(mean_reward)
# <codecell>
#Training GMM to build features
#data_0data[data[:,2]==0.,:3]
from sklearn import mixture
gmm0 = mixture.GMM(n_components=1, covariance_type='full')
gmm1 = mixture.GMM(n_components=1, covariance_type='full')
gmm2 = mixture.GMM(n_components=1, covariance_type='full')
gmm0.fit(data[data[:,2]==0.,:2])
gmm1.fit(data[data[:,2]==1.,:2])
gmm2.fit(data[data[:,2]==2.,:2])
def single_psi(sa):
return array([exp(gmm.score(sa[:,:2])) for gmm in [gmm0,gmm1,gmm2]])
def single_phi(sa):
action = int(sa[-1])
sa = sa.reshape(1,sa.shape[0])
answer = zeros((9,1))
answer[action*3:action*3+3] = single_psi(sa)
return answer
phi = non_scalar_vectorize(single_phi,(3,),(9,1))
X = linspace(-1,1,60)
Y = linspace(-1,1,60)
Y,X = meshgrid(X,Y)
Act = 2*ones(X.shape)
SA = zip_stack(X,Y,Act)
print SA.shape
phi_sa = phi(SA.reshape((60*60,3))).reshape((60,60,9))
#phi_sa.transpose().shape
Z = dot(phi_sa,array([1,1,1,1,1,1,1,1,1]))
contourf(X,Y,Z,50)
colorbar()
# <codecell>
#CSI, normal
s=data[:,:2]
a=data[:,2]
from sklearn import svm
clf = svm.SVC(C=1000., probability=True)
clf.fit(s, a)
clf_predict= lambda state : clf.predict(squeeze(state))
vpredict = non_scalar_vectorize( clf_predict, (2,), (1,1) )
pi_c = lambda state: vpredict(state).reshape(state.shape[:-1]+(1,))
clf_score = lambda sa : squeeze(clf.predict_proba(squeeze(sa[:2])))[sa[-1]]
vscore = non_scalar_vectorize( clf_score,(3,),(1,1) )
q= Q
#q = lambda sa: vscore(sa).reshape(sa.shape[:-1])
##DEBUG
with open('classification.obj', 'wb') as output:
pickle.dump(clf, output, pickle.HIGHEST_PROTOCOL)
##END DEBUG
column_shape = (len(data),1)
s = data[:,0:2]
a = data[:,2].reshape(column_shape)
sa = data[:,0:3]
s_dash = data[:,3:5]
a_dash = pi_c(s_dash).reshape(column_shape)
sa_dash = hstack([s_dash,a_dash])
hat_r = (q(sa)-GAMMA*q(sa_dash)).reshape(column_shape)
r_min = min(hat_r)-1.*ones(column_shape)
regression_input_matrices = [hstack([s,action*ones(column_shape)]) for action in ACTION_SPACE]
def add_output_column( reg_mat ):
actions = reg_mat[:,-1].reshape(column_shape)
hat_r_bool_table = array(actions==a)
r_min_bool_table = array(hat_r_bool_table==False) #"not hat_r_bool_table" does not work as I expected
output_column = hat_r_bool_table*hat_r+r_min_bool_table*r_min
return hstack([reg_mat,output_column])
regression_matrix = vstack(map(add_output_column,regression_input_matrices))
#Régression
max(hat_r)
# <codecell>
#from sklearn.svm import SVR
from sklearn import linear_model
y = regression_matrix[:,-1]
X = squeeze(phi(regression_matrix[:,:-1]))
print X.shape
#reg = SVR(C=1000.0, epsilon=0.1,kernel='linear')
#reg = linear_model.LinearRegression()
#reg.fit(X, y)
reg_omega = dot(dot(inv(dot(X.transpose(),X)),X.transpose()),y).reshape((9,1))
#reg_omega = array([1,1,1,1,1,1,1,1,1])
#print reg_omega.shape
#CSI_reward = lambda sas:dot(squeeze(phi(sas[:3])),reg_omega)[0]
#CSI_reward = lambda sas:Q(sas[:3])#Marchotte
CSI_reward = lambda sas:Q(sas[:3])-GAMMA*Q(hstack([sas[-2:],policy(sas[-2:])]))#Moins bien
vCSI_reward = non_scalar_vectorize( CSI_reward, (5,),(1,1) )
data_for_lspi = inverted_pendulum_random_trace(reward=CSI_reward)
policy_CSI,omega_CSI = lspi( data_for_lspi, s_dim=2,a_dim=1, A=ACTION_SPACE, phi=inverted_pendulum_phi, phi_dim=30, iterations_max=20 )
savetxt("omega_CSI.mat",omega_CSI)
#On plotte les rewards en fonction de l'action
for action in ACTION_SPACE:
sr = array([l for l in regression_matrix if l[2]==action])
R = lambda p,s: squeeze( vCSI_reward(zip_stack(p,s,action*ones(p.shape),p,s)))
pos = linspace(-0.2,0.2,30)
speed = linspace(-1,1,30)
pos,speed = meshgrid(pos,speed)
Z = R(pos,speed)
figure()
contourf(pos,speed,Z,50)
clim(vmin=min(sr[:,3].reshape(-1)),vmax=max(sr[:,3].reshape(-1)))
scatter(sr[:,0],sr[:,1],s=20,c=sr[:,3], marker = 'o', )#cmap = cm.jet );
colorbar()
def mean_reward(s,p):
actions = [a*ones(s.shape) for a in ACTION_SPACE]
matrices = [zip_stack(s,p,a,s,p) for a in actions]
return mean(array([squeeze(vCSI_reward(m)) for m in matrices]), axis=0)
inverted_pendulum_plot(mean_reward)
# <codecell>
X = linspace(-pi,pi,30)
Y = linspace(-pi,pi,30)
Y,X = meshgrid(X,Y)
#policy_CSI=lambda s:choice(ACTION_SPACE)
plottable_episode_length = inverted_pendulum_episode_vlength(policy_CSI)
plottable_episode_average_length = inverted_pendulum_episode_average_vlength(policy_CSI)
Z4 = plottable_episode_length(X,Y)
contourf(X,Y,Z4,50)
colorbar()
# <codecell>
def inverted_pendulum_episode_length(initial_position,initial_speed,policy):
answer = 0
reward = 0.
state = array([initial_position,initial_speed])
#while answer < EXPERT_RUN_LENGTH and reward == 0. :
while answer < 100 and reward == 0. :
action = policy(state)
next_state = inverted_pendulum_next_state(state,action)
reward = inverted_pendulum_reward(hstack([state, action, next_state]))
state=next_state
answer+=1
return answer
def inverted_pendulum_episode_vlength(policy):
return vectorize(lambda p,s:inverted_pendulum_episode_length(p,s,policy))
def inverted_pendulum_episode_average_length(initial_position,initial_speed,policy):
return mean([inverted_pendulum_episode_length(initial_position,initial_speed, policy) for i in range(0,10)])
def inverted_pendulum_episode_average_vlength(policy):
return vectorize(lambda p,s:inverted_pendulum_episode_average_length(p,s,policy))