-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmultivariate_mlp_btc.py
221 lines (167 loc) · 8.6 KB
/
multivariate_mlp_btc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from __future__ import print_function
import sys
import math
from processing import *
import pandas as pd
import matplotlib
#matplotlib.use('Agg')
import matplotlib.pylab as plt
from sklearn.metrics import mean_squared_error
import time
seed=7
np.random.seed(seed) # for reproducibility
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint,ReduceLROnPlateau, TensorBoard
from hyperbolic_nonlinearities import *
from keras import regularizers
from keras.layers.advanced_activations import *
from keras.optimizers import RMSprop, Adam, SGD, Nadam
from keras.initializers import *
start_time = time.time()
batch_size = 64
nb_epoch = 1000
patience = 1000
EMB_SIZE = 4 #numero de features
TRAIN_SIZE = 30
TARGET_TIME = 1
LAG_SIZE = 1
data_original = pd.read_csv('btc-usd.csv', sep = ',', engine='python', decimal='.',header=0)
closep = data_original['close']
ewm = closep.ewm(span=30, min_periods=30).mean()
#removendo NaN
data_original = data_original.iloc[29:]
ewm = np.array(ewm.iloc[29:])
#averagep = data_original.ix[:, 1].tolist()
openp = data_original['open'].tolist()
highp = data_original['high'].tolist()
lowp = data_original['low'].tolist()
closep = data_original['close'].tolist()
#volumep = data_original.ix[:, 6].tolist()
dataset = np.column_stack((openp, highp, lowp, closep))
X, Y = split_into_chunks(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE, binary=False, scale=False)
X, Y = np.array(X), np.array(Y)
X_trainp, X_testp, Y_trainp, Y_testp = create_Xt_Yt(X, Y)
Y_trainp, Y_testp = Y_trainp[:,3], Y_testp[:,3] #getting just close as target
def evaluate_model(model, name, n_layers, ep, normalization):
if (normalization == 'AN'):
X_train, X_test, Y_train, Y_test, scaler, shift_train, shift_test = nn_an(dataset, ewm, TRAIN_SIZE,TARGET_TIME, LAG_SIZE)
if (normalization == 'SW'):
X_train, X_test, Y_train, Y_test, scaler_train, scaler_test = nn_sw(dataset,TRAIN_SIZE,TARGET_TIME, LAG_SIZE)
if (normalization == 'MM'):
X_train, X_test, Y_train, Y_test, scaler = nn_mm(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
if (normalization == 'ZS'):
X_train, X_test, Y_train, Y_test, scaler = nn_zs(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
if (normalization == 'DS'):
X_train, X_test, Y_train, Y_test, maximum = nn_ds(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
csv_logger = CSVLogger('output/%d_layers/%s_%s.csv' % (n_layers, name, normalization))
reduce_lr = ReduceLROnPlateau(monitor='val_loss')
es = EarlyStopping(monitor='val_loss', patience=patience)
#mcp = ModelCheckpoint('output/mnist_adaptative_%dx800/%s.checkpoint' % (n_layers, name), save_weights_only=True)
#tb = TensorBoard(log_dir='output/mnist_adaptative_%dx800' % n_layers, histogram_freq=1, write_graph=False, write_images=False)
#sgd = SGD(lr=0.01, momentum=0.9, nesterov=True)
#optimizer = sgd
optimizer = "adam"
#optimizer = "adadelta"
model.compile(loss='mean_squared_error', optimizer=optimizer)
# reshape input to be [samples, time steps, features]
# X_train = np.reshape(X_train, (X_train.shape[0], int(X_train.shape[1]/EMB_SIZE), EMB_SIZE))
# X_test = np.reshape(X_test, (X_test.shape[0], int(X_test.shape[1]/EMB_SIZE), EMB_SIZE))
#X_train = np.expand_dims(X_train, axis=2)
#X_test = np.expand_dims(X_test, axis=2)
Y_train = Y_train[:,3]
Y_test = Y_test[:,3]
history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=ep, verbose=0, validation_split=0.1, callbacks=[csv_logger,es])
# plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
# plt.title('model loss')
# plt.ylabel('loss')
# plt.xlabel('epoch')
# plt.legend(['train', 'test'], loc='upper left')
# plt.show()
# make predictions (scaled)
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
# invert predictions (back to original)
if (normalization == 'AN'):
# originals
X_trainp, X_testp3, Y_trainp, Y_testp3 = nn_an_den(X_train, X_test, Y_train, Y_test,
scaler, shift_train, shift_test)
# predicted
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_an_den(X_train, X_test, trainPredict, testPredict,
scaler, shift_train, shift_test)
print(len(X_trainp))
if (normalization == 'SW'):
X_trainp, X_testp3, Y_trainp, Y_testp3 = nn_sw_den(X_train, X_test, Y_train, Y_test,
scaler_train, scaler_test)
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_sw_den(X_train, X_test, trainPredict, testPredict,
scaler_train, scaler_test)
print(len(X_trainp))
if (normalization == 'MM'):
X_trainp, X_testp3, Y_trainp, Y_testp3 = nn_mm_den(X_train, X_test, Y_train, Y_test,
scaler)
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_mm_den(X_train, X_test, trainPredict, testPredict,
scaler)
if (normalization == 'ZS'):
X_trainp, X_testp3, Y_trainp, Y_testp3 = nn_zs_den(X_train, X_test, Y_train, Y_test,
scaler)
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_zs_den(X_train, X_test, trainPredict, testPredict,
scaler)
if (normalization == 'DS'):
X_trainp, X_testp3, Y_trainp, Y_testp3 = nn_ds_den(X_train, X_test, Y_train, Y_test,
maximum)
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_ds_den(X_train, X_test, trainPredict, testPredict,
maximum)
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(new_train_predicted, Y_trainp))
#trainScore = mean_squared_error(trainPredict, Y_train)
#print('Train Score: %f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(new_predicted, Y_testp))
#testScore = mean_squared_error(testPredict, Y_test)
#print('Test Score: %f RMSE' % (testScore))
epochs = len(history.epoch)
# fig = plt.figure()
# plt.plot(Y_test[:150], color='black') # BLUE - trained RESULT
# plt.plot(testPredict[:150], color='blue') # RED - trained PREDICTION
#plt.plot(Y_testp[:150], color='green') # GREEN - actual RESULT
#plt.plot(new_predicted[:150], color='red') # ORANGE - restored PREDICTION
#plt.show()
return trainScore, testScore, epochs, optimizer
def __main__(argv):
n_layers = int(argv[0])
print(n_layers,'layers')
#nonlinearities = ['aabh', 'abh', 'ah', 'sigmoid', 'relu', 'tanh']
nonlinearities = ['sigmoid', 'relu', 'tanh']
#nonlinearities = ['relu']
# normalizations = ['AN', 'SW', 'MM', 'ZS', 'DS']
normalizations = ['AN', 'SW']
with open("output/%d_layers/compare.csv" % n_layers, "a") as fp:
fp.write("-BTC/MLP-Multi NN\n")
for normalization in normalizations:
#for f in range(1,2):
name='tanh'
model = Sequential()
model.add(Dense(12, input_shape = (TRAIN_SIZE, EMB_SIZE),
kernel_regularizer=regularizers.l2(0.01)))
model.add(Activation(name))
for l in range(n_layers):
model.add(Dense(12, input_shape = (TRAIN_SIZE, EMB_SIZE)))
model.add(Activation(name))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1))
model.add(Activation(name))
#model.summary()
trainScore, testScore, epochs, optimizer = evaluate_model(model, name, n_layers,nb_epoch, normalization)
# if(testScore_aux > testScore):
# testScore_aux=testScore
# f_aux = f
elapsed_time = (time.time() - start_time)
with open("output/%d_layers/compare.csv" % n_layers, "a") as fp:
#fp.write("%i,%s,%f,%f,%d,%s --%s seconds\n" % (f, name, trainScore, testScore, epochs, optimizer, elapsed_time))
fp.write("%s,%s,%f,%f,%d,%s --%s seconds\n" % (
name, normalization, trainScore, testScore, epochs, optimizer, elapsed_time))
model = None
#print("melhor parametro: %i" % f_aux)
if __name__ == "__main__":
__main__(sys.argv[1:])