-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathStepForwardWrapping.py
174 lines (135 loc) · 5.72 KB
/
StepForwardWrapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
"""
Created on Wed May 8 15:10:49 2019
@author: ErikF (and Kaan) :)
"""
# =============================================================================
# import numpy as np
# from mlxtend.feature_selection import SequentialFeatureSelector
# from sklearn.neighbors import KNeighborsClassifier
# from sklearn.decomposition import PCA
#
# def StepForwardWrapping(data, labels, nrFeatures, k = 5):
#
# nrClasses = len(set(labels))
# nrDataPts, nrFeaturesOriginal = data.shape
# # nrDataPoints = data.shape[0]
# features = []
# feature_selector = SequentialFeatureSelector(KNeighborsClassifier(5),
# k_features=k,
# forward=True,
# verbose=0,
# cv=5,
# n_jobs=-1)
#
# features = feature_selector.fit(data, labels)
# return features
#
# def StepForwardWrappingPCA(data, labels, nrFeatures, k = 5):
# pca = PCA()
# =============================================================================
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from mlxtend.feature_selection import SequentialFeatureSelector
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from DataGenerator import generateData
from Preprocessing import transfromFeaturesToNoiseRandomly
from time import time
from settings import (NUMBER_OF_CLASSES, NUMBER_OF_FEATURES,
NUMBER_OF_RECORDS_PER_CLASS,
FEATURE_MEAN_RANGE, NUMBER_OF_FEATURES_TO_PRUNE,
NOISE_MEAN, NOISE_STD,
TEST_SIZE_PERCENTAGE)
RANDOM_NUMBER_SEEDS = range(0,20)
NUMBER_OF_NON_NOISY_FEATURES = NUMBER_OF_FEATURES - NUMBER_OF_FEATURES_TO_PRUNE
NUMBER_OF_FEATURES_TO_SELECT_RANGE = range(1,NUMBER_OF_FEATURES)
def runWrappingAndGetAccuracies(randomNumberSeed, nFeaturesToSelect):
np.random.seed(randomNumberSeed)
data, labels = generateData(NUMBER_OF_CLASSES, NUMBER_OF_FEATURES,
NUMBER_OF_RECORDS_PER_CLASS, FEATURE_MEAN_RANGE,
randomNumberSeed)
trainData = transfromFeaturesToNoiseRandomly(data, labels,
NUMBER_OF_FEATURES_TO_PRUNE,
NOISE_MEAN, NOISE_STD,
randomNumberSeed=randomNumberSeed)
X_train, X_test, y_train, y_test = train_test_split(trainData, labels,
test_size=TEST_SIZE_PERCENTAGE)
n_neighbors = 5
feature_selector = SequentialFeatureSelector(KNeighborsClassifier(n_neighbors),
k_features=nFeaturesToSelect,
forward=True,
verbose=0,
cv=5,
n_jobs=-1)
features = feature_selector.fit(X_train, y_train)
xTrainWithSelectedFeatures = X_train[:, features.k_feature_idx_]
xTestWithSelectedFeatures = X_test[:, features.k_feature_idx_]
knn = KNeighborsClassifier(n_neighbors)
knn.fit(xTrainWithSelectedFeatures, y_train)
train_pred = knn.predict(xTrainWithSelectedFeatures)
accuracyTrain = accuracy_score(y_train, train_pred)
test_pred = knn.predict(xTestWithSelectedFeatures)
accuracyTest = accuracy_score(y_test, test_pred)
return (accuracyTrain, accuracyTest)
class AccuracyData:
def __init__(self, meanTrain, stdTrain, meanTest, stdTest, meanTime):
self.meanTrain = meanTrain
self.stdTrain = stdTrain
self.meanTest = meanTest
self.stdTest = stdTest
self.meanTime = meanTime
meanTrainAccuracies = []
meanTestAccuracies = []
stdTrainAccuracies = []
stdTestAccuracies = []
for nFeatures in NUMBER_OF_FEATURES_TO_SELECT_RANGE:
if nFeatures == 3:
c = 211
trainAccuracies = []
testAccuracies = []
durations = []
for seed in RANDOM_NUMBER_SEEDS:
a = time()
trainAccuracy, testAccuracy = runWrappingAndGetAccuracies(seed, nFeatures)
b = time()
trainAccuracies.append(trainAccuracy)
testAccuracies.append(testAccuracy)
durations.append(b-a)
meanTrainAccuracy = np.mean(trainAccuracies)
stdTrainAccuracy = np.std(trainAccuracies)
meanTestAccuracy = np.mean(testAccuracies)
stdTestAccuracy = np.std(testAccuracies)
meanTime = np.mean(durations)
meanTrainAccuracies.append(meanTrainAccuracy)
meanTestAccuracies.append(meanTestAccuracy)
stdTrainAccuracies.append(stdTrainAccuracy)
stdTestAccuracies.append(stdTestAccuracy)
durations.append(meanTime)
meanDuration = np.mean(durations)
meanTrainAccuracies.reverse()
stdTrainAccuracies.reverse()
meanTestAccuracies.reverse()
stdTestAccuracies.reverse()
plt.figure()
#plt.errorbar(NUMBER_OF_FEATURES_TO_SELECT_RANGE, meanTrainAccuracies,
# yerr=stdTrainAccuracies, label="Training Set",
# fmt='_', capthick=2, capsize=10)
plt.errorbar(NUMBER_OF_FEATURES_TO_SELECT_RANGE, meanTestAccuracies,
yerr=stdTestAccuracies, label="Test data",
capthick=2, capsize=10)
plt.errorbar(NUMBER_OF_FEATURES_TO_SELECT_RANGE, meanTrainAccuracies,
yerr=stdTrainAccuracies, label="Training data",
capthick=2, capsize=10)
plt.title("Number Of Features to remove vs Accuracy" +
"Number Of Non-Noisy Features: {}".format(NUMBER_OF_NON_NOISY_FEATURES))
plt.xlabel("Number Of Features to remove")
plt.ylabel("Accuracy")
plt.legend()
plt.show()
saveData = AccuracyData(meanTrainAccuracies, stdTrainAccuracies,
meanTestAccuracies, stdTestAccuracies,
meanDuration)
np.save("ForwardWrappingMeanAndStdData", saveData)