-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBackwardWrappingTimeScaling.py
82 lines (63 loc) · 2.59 KB
/
BackwardWrappingTimeScaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# -*- coding: utf-8 -*-
"""
Created on Thu May 9 13:12:18 2019
@author: kaany
"""
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from mlxtend.feature_selection import SequentialFeatureSelector
from matplotlib import pyplot as plt
from DataGenerator import generateData
from Preprocessing import transfromFeaturesToNoiseRandomly
from time import time
from settings import (NUMBER_OF_CLASSES, NUMBER_OF_RECORDS_PER_CLASS,
FEATURE_MEAN_RANGE,
NOISE_MEAN, NOISE_STD,
TEST_SIZE_PERCENTAGE)
RANDOM_NUMBER_SEEDS = range(0,20)
NUMBER_OF_FEATURES = range(2,20)
def runWrappingAndGetAccuraciesWithPCA(randomNumberSeed, nFeatures, nFeaturesToSelect):
np.random.seed(randomNumberSeed)
data, labels = generateData(NUMBER_OF_CLASSES, nFeatures,
NUMBER_OF_RECORDS_PER_CLASS, FEATURE_MEAN_RANGE,
randomNumberSeed)
NUMBER_OF_FEATURES_TO_PRUNE = nFeatures - nFeaturesToSelect
trainData = transfromFeaturesToNoiseRandomly(data, labels,
NUMBER_OF_FEATURES_TO_PRUNE,
NOISE_MEAN, NOISE_STD,
randomNumberSeed=randomNumberSeed)
X_train, X_test, y_train, y_test = train_test_split(trainData, labels,
test_size=TEST_SIZE_PERCENTAGE)
n_neighbors = 5
a = time()
feature_selector = SequentialFeatureSelector(KNeighborsClassifier(n_neighbors),
k_features=nFeaturesToSelect,
forward=False,
verbose=0,
cv=5,
n_jobs=-1)
_ = feature_selector.fit(X_train, y_train)
b = time()
return (b-a)
meanDurations = []
stdDurations = []
for nFeatures in NUMBER_OF_FEATURES:
nFeaturesToSelect = int(nFeatures/2)
durations = []
for seed in RANDOM_NUMBER_SEEDS:
duration = runWrappingAndGetAccuraciesWithPCA(seed, nFeatures, nFeaturesToSelect)
durations.append(duration)
meanTime = np.mean(durations)
stdTime = np.std(durations)
meanDurations.append(meanTime)
stdDurations.append(stdTime)
plt.figure(figsize=(8,6))
plt.errorbar(NUMBER_OF_FEATURES, meanDurations,
yerr=stdDurations, label="Mean Duration",
capthick=2, capsize=10)
plt.title("Backward Elimination\nNumber Of Features in Data Set vs Duration")
plt.xlabel("Number Of Dimenions in Data Set")
plt.ylabel("Duration (Seconds)")
plt.legend()
plt.show()