-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMFLearned.py
157 lines (135 loc) · 6.77 KB
/
MFLearned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Ervin Dervishaj
@email: [email protected]
"""
import os
import pickle
import itertools
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datasets.LastFM import LastFM
from RecSysExp import dict_rec_classes, dataset_kwargs
from RunBestParameters import dict_rec_classes, load_URMs
contextRc = {
'axes.grid': True,
'xtick.labelsize': 50,
'ytick.labelsize': 50,
'legend.fontsize': 30,
'grid.linewidth': 2
}
def latent_factors_study():
with plt.style.context(['default', contextRc]):
start_path = 'latent_factors'
metric = 'MAP'
cutoff = 5
datasets = ['1M', 'LastFM', 'hetrec2011']
num_factors = [10, 30, 50, 100, 150, 250]
algos = ['PureSVD', 'ALS', 'GANMF-u', 'GANMF-i']
for d in datasets:
marker = itertools.cycle(['o', '^', 's', 'p', '1', 'D', 'P', '*'])
fig, ax = plt.subplots(figsize=(20, 10))
ax.set_xlim([0, max(num_factors) + 5])
ax.set_xticks(num_factors)
ax.set_xticklabels([str(x) for x in num_factors])
ax.locator_params(axis='x', nbins=len(num_factors))
for algo in algos:
train_mode = ''
if algo.startswith('GANMF'):
algo, train_mode = algo.split('-')
train_mode = 'user' if train_mode == 'u' else 'item'
scores = []
for k in num_factors:
results_path = os.path.join(start_path, dict_rec_classes[algo].RECOMMENDER_NAME + '_' + train_mode + '_' + d + '_' + str(k), 'test_results.pkl')
with open(results_path, 'rb') as f:
results_dict = pickle.load(f)
scores.append(results_dict[cutoff][metric])
if algo == 'GANMF':
algo = 'GANMF-i' if train_mode == 'item' else 'GANMF-u'
ax.plot(num_factors, scores, label='WRMF' if algo == 'ALS' else algo, marker=next(marker), linewidth=5, ms=15)
ax.set_xlabel('K', fontsize=50)
ax.set_ylabel(metric + '@' + str(cutoff), fontsize=50)
ax.legend(loc='best')
fig.savefig(os.path.join('latent_factors', 'latent_factors' + ''.join(algos) + '_' + d), bbox_inches='tight')
def mf_qualitative_study():
with plt.style.context(['seaborn-paper', contextRc]):
metric = 'MAP'
cutoff = 20
datasets = ['1M', 'hetrec2011', LastFM]
algorithms = ['PureSVD', 'ALS', 'GANMF-u', 'GANMF-i']
user_masks = {
'1M': [25, 100, 500, 1000],
'hetrec2011': [25, 100, 500, 1000],
'LastFM': [10, 20, 30, 40]
}
for d in datasets:
dataset_name = d if isinstance(d, str) else d.DATASET_NAME
URM_train, URM_test, _, _, _ = load_URMs(d, dataset_kwargs)
count_ratings = (URM_train + URM_test).sum(axis=1).A1
df = pd.DataFrame({'uid': [], 'algo': [], 'key': [], metric: []})
for algo in algorithms:
training_mode = ''
if algo.startswith('GANMF'):
algo, training_mode = algo.split('-')
training_mode = 'user' if training_mode == 'u' else 'item'
model = dict_rec_classes[algo](URM_train, mode=training_mode, is_experiment=True, verbose=True)
else:
model = dict_rec_classes[algo](URM_train)
sim = 'cosine' if algo == 'ItemKNN' else ''
save_path = os.path.join('test_results', model.RECOMMENDER_NAME + '_' + training_mode + sim + '_' + dataset_name)
model.loadModel(save_path)
def build_xticks():
xticks = []
for i, val in enumerate(user_masks[dataset_name]):
if i == 0:
xticks.append('<' + str(val))
elif i == len(user_masks[dataset_name])-1:
xticks.append('>=' + str(val))
else:
lbound = user_masks[dataset_name][i-1]
xticks.append('>=' + str(lbound) + ', <' + str(val))
return xticks
def apply_key(u):
no_ratings = count_ratings[u]
for i, ubound in enumerate(user_masks[dataset_name]):
if no_ratings < ubound:
if i == 0:
return '<' + str(ubound)
else:
lbound = user_masks[dataset_name][i-1]
return '>=' + str(lbound) + ', <' + str(ubound)
else:
if i == len(user_masks[dataset_name])-1:
return '>=' + str(ubound)
def fast_eval(usersToEvaluate):
from Base.Evaluation.metrics import average_precision
scores = []
recommended_items, _ = model.recommend(usersToEvaluate, remove_seen_flag=True, cutoff=cutoff, return_scores=True)
for u in usersToEvaluate:
relevant_items = URM_test.indices[URM_test.indptr[u]: URM_test.indptr[u+1]]
recommendation_list = recommended_items[u]
is_relevant = np.in1d(recommendation_list, relevant_items, assume_unique=True)
scores.append(average_precision(is_relevant[:cutoff], relevant_items))
return scores
userid = list(range(URM_train.shape[0]))
keys = [apply_key(u) for u in userid]
if training_mode == 'item':
model.URM_train = model.URM_train.T.tocsr()
ress = fast_eval(np.array(userid))
if training_mode == 'item':
model.URM_train = model.URM_train.T.tocsr()
if training_mode != '':
training_mode = '-u' if training_mode == 'user' else '-i'
df = df.append(pd.DataFrame({'algo': [algo + training_mode] * len(keys), 'key': keys, metric: ress}))
fig, ax = plt.subplots(figsize=(20, 10))
ax = sns.barplot(data=df, x='key', y=metric, hue='algo', ci=None, ax=ax, order=build_xticks())
ax.set_ylabel(metric + '@' + str(cutoff), fontsize=50)
ax.set_xlabel('item interactions per user', fontsize=50)
ax.legend().set_title('')
fig.savefig(os.path.join('qualitative_study', '_'.join(algorithms) + '_' + dataset_name), bbox_inches='tight')
if __name__ == '__main__':
latent_factors_study()
mf_qualitative_study()