-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathAblationStudy.py
163 lines (124 loc) · 5.3 KB
/
AblationStudy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Ervin Dervishaj
@email: [email protected]
"""
import os
import sys
import pickle
import itertools
import subprocess
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
from GANRec.GANMF import GANMF
from RecSysExp import load_URMs, dataset_kwargs, all_datasets, name_datasets
seed = 1337
contextRc = {
'axes.grid': True,
'xtick.labelsize': 50,
'ytick.labelsize': 50,
'legend.fontsize': 50,
'grid.linewidth': 2
}
def feature_matching_coefficient(arguments):
start_path = 'feature_matching'
end_path = 'feature_matching'
values = ['00', '02', '04', '06', '08', '10']
cutoff = 5
range_coeff = [0, 0.2, 0.4, 0.6, 0.8, 1]
mode = 'item'
dataset = None
for arg in arguments:
if arg in name_datasets and dataset is None:
dataset = arg
map = []
ndcg = []
for val in values:
p = os.path.join(start_path, 'GANMF_' + mode + '_' + dataset + '_' + val, 'GANMF_' + mode + '_' + dataset, 'test_results.pkl')
with open(p, 'rb') as f:
d = pickle.load(f)
map.append(d[cutoff]['MAP'])
ndcg.append(d[cutoff]['NDCG'])
marker = itertools.cycle(['o', '^', 's', 'p', '1', 'D', 'P', '*'])
with plt.style.context(['default', contextRc]):
fig, ax = plt.subplots(figsize=(20, 10))
ax.set_xlabel('\u03B1', fontsize=50)
ax.plot(range_coeff, map, label='MAP@5', marker=next(marker), linewidth=5, ms=15)
ax.plot(range_coeff, ndcg, label='NDCG@5', marker=next(marker), linewidth=5, ms=15)
ax.legend(loc='best')
fig.savefig(os.path.join(end_path, 'GANMF_' + mode + '_' + dataset + '_feature_matching_effect.png'), bbox_inches='tight')
def feature_matching_cos_sim(arguments):
plt.style.use('fivethirtyeight')
sns.set_context('paper', font_scale=5)
start_path = 'feature_matching'
end_path = os.path.join(start_path, 'cosine_similarities')
mode = 'user'
dataset = None
for arg in arguments:
if arg in name_datasets and dataset is None:
dataset = arg
# if arg in ['--user', '--item'] and mode is None:
# mode = arg[2:]
URM_train, _, _, _, _ = load_URMs(all_datasets[name_datasets.index(dataset)], dataset_kwargs)
no_feature_matching_params_dir = os.path.join(start_path, 'GANMF_' + mode + '_' + dataset + '_00', 'GANMF_' + mode + '_' + dataset)
model = GANMF(URM_train, mode=mode, is_experiment=True)
model.loadModel(no_feature_matching_params_dir)
all_preds = model._compute_item_score(user_id_array=np.array(range(URM_train.shape[0])))
similarity = cosine_similarity(all_preds)
mean = np.mean(similarity)
std = np.std(similarity)
fig, ax = plt.subplots(figsize=(20, 10))
with sns.axes_style('darkgrid', {'font.scale': 5}):
sns.heatmap(similarity, vmin=-1, vmax=1, xticklabels=False, yticklabels=False, ax=ax)
ax.tick_params(left=False, bottom=False)
hm_save_path = os.path.join(end_path, 'GANMF_' + mode + '_' + dataset + '_wo_fm.png')
stats_save_path = os.path.join(end_path, 'GANMF_' + mode + '_' + dataset + '_wo_fm.txt')
fig.savefig(hm_save_path, bbox_inches="tight")
with open(stats_save_path, 'w') as f:
f.write('Mean: ' + str(mean))
f.write('\n')
f.write('Std: ' + str(std))
best_params_dir = os.path.join('test_results', 'GANMF_' + mode + '_' + dataset)
model = GANMF(URM_train=URM_train, mode=mode, is_experiment=True)
model.loadModel(best_params_dir)
all_preds = model._compute_item_score(user_id_array=np.array(range(URM_train.shape[0])))
similarity = cosine_similarity(all_preds)
mean = np.mean(similarity)
std = np.std(similarity)
fig, ax = plt.subplots(figsize=(20, 10))
with sns.axes_style('darkgrid', {'font.scale': 5}):
sns.heatmap(similarity, vmin=-1, vmax=1, xticklabels=False, yticklabels=False, ax=ax)
ax.tick_params(left=False, bottom=False)
hm_save_path = os.path.join(end_path, 'GANMF_' + mode + '_' + dataset + '_with_fm.png')
stats_save_path = os.path.join(end_path, 'GANMF_' + mode + '_' + dataset + '_with_fm.txt')
fig.savefig(hm_save_path, bbox_inches="tight")
with open(stats_save_path, 'w') as f:
f.write('Mean: ' + str(mean))
f.write('\n')
f.write('Std: ' + str(std))
def run_binGANMF(arguments):
mode = None
dataset = None
for arg in arguments:
if arg in name_datasets and dataset is None:
dataset = arg
if arg in ['--user', '--item'] and mode is None:
mode = arg
if dataset is not None:
subprocess.run(['python', 'RecSysExp.py', dataset, 'DisGANMF', mode])
subprocess.run(['python', 'RunBestParameters.py', dataset, 'DisGANMF', mode])
if __name__ == '__main__':
"""
Run this script as:
python AblationStudy.py <dataset-name> [binGANMF | feature-matching [--user | --item]]
"""
assert len(sys.argv) >= 2, 'Number of arguments must be greater than 2, given {:d}'.format(len(sys.argv))
arguments = sys.argv[1:]
if 'binGANMF' in arguments:
run_binGANMF(arguments)
if 'feature-matching' in arguments:
feature_matching_coefficient(arguments)
feature_matching_cos_sim(arguments)