-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_val.py
executable file
·376 lines (326 loc) · 18.2 KB
/
train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 23 14:09:48 2021
@author: mmplab603
"""
import torch
import arg_reader
import importlib
from load_model import load_model
import logging
import tqdm
import os
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from config import cfg
import sys
from utils.general import info_log
from utils.env_check import check_device
from easydict import EasyDict as edict
import shutil
import time
# =============================================================================
# Get optimizer learning rate
# =============================================================================
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
# Train one iteration
def train(model, data, label, loss_func, optimizers, args):
if args.DEVICE != -1:
b_data = data.to(args.device_id)
b_label = label.to(args.device_id)
else:
b_data = data
b_label = label
for optimizer in optimizers:
optimizer.zero_grad()
# Model forward
output = model(b_data)
# Get prediction
_, predicted = torch.max(output.data, 1)
#_, predicted5 = torch.topk(output_1.data, 5, dim = 1)
# calculate loss
cls_loss = loss_func["CE"](output, b_label)
loss = cls_loss
loss.backward()
for optimizer in optimizers:
optimizer.step()
losses = {
"cls_loss" : cls_loss.detach(),
}
return losses, predicted.detach().cpu()#, predicted5.detach().cpu()
# Test one iteration
def test(model, data, label, loss_func, optimizers, args):
with torch.no_grad():
if args.DEVICE != -1:
b_data = data.to(args.device_id)
b_label = label.to(args.device_id)
else:
b_data = data
b_label = label
# Model forward
output = model(b_data)
# Get prediction
_, predicted = torch.max(output.data, 1)
#_, predicted5 = torch.topk(output_1.data, 5, dim = 1)
# calculate loss
cls_loss = loss_func["CE"](output, b_label)
loss = cls_loss
losses = {
"cls_loss" : cls_loss.detach(),
}
return losses, predicted.detach().cpu()#, predicted5.detach().cpu()
# =============================================================================
# Load data, load model (pretrain if needed), define loss function, define optimizer,
# define learning rate scheduler (if needed), training and validation
# =============================================================================
def runs(args):
# Load dataset ------------------------------------------------------------
dataloader = importlib.import_module(args.DATALOADER)
dataset, dataset_sizes, all_image_datasets = dataloader.load_data(args)
# -------------------------------------------------------------------------
# Define tensorboard for recording ----------------------------------------
if args.global_rank in [-1, 0]:
writer = SummaryWriter('./logs/{}'.format(args.INDEX))
# -------------------------------------------------------------------------
for index, image_data in enumerate(dataset):
# resume training process ------------------------------------------------
start_epoch = 1
if args.RESUME:
resume_data = torch.load(args.WEIGHT_PATH)
args.m = resume_data['m']
args.m_is_concept_num = resume_data['m_is_concept_num']
start_epoch = resume_data["Epoch"] + 1
# ------------------------------------------------------------------------
# Load model (load pretrain if needed) ------------------------------------
model = load_model(args)
# -------------------------------------------------------------------------
# Define loss -------------------------------------------------------------
loss_funcs = {}
if args.LOSS == "CE":
loss_funcs[args.LOSS] = torch.nn.CrossEntropyLoss()
assert len(loss_funcs) != 0, "Miss define loss"
# -------------------------------------------------------------------------
# Define optimizer --------------------------------------------------------
train_optimizers = []
if args.OPTIMIZER == "ADAM":
train_optimizers.append(torch.optim.Adam(model.parameters(), lr = args.LR, weight_decay = args.WD))
if args.RESUME:
for i in range(len(resume_data["Optimizer"])):
train_optimizers[i].load_state_dict(resume_data["Optimizer"][i])
assert len(train_optimizers) != 0, "Miss define optimizer"
# -------------------------------------------------------------------------
# Define learning rate scheduler ------------------------------------------
lr_schedulers = []
if "LR_SCHEUDLER" in args:
lr_schedulers.append(torch.optim.lr_scheduler.StepLR(train_optimizers[0], step_size = args.joint_lr_step_size, gamma = 0.1))
if args.RESUME:
for i in range(len(resume_data["LR_scheduler"])):
lr_schedulers[i].load_state_dict(resume_data["LR_scheduler"][i])
# -------------------------------------------------------------------------
# Define Meters -------------------------------------------------------
ACCMeters = []
ACCMeters5 = []
LOSSMeters = []
for i in range(args.KFOLD):
ACCMeters.append(AverageMeter())
ACCMeters5.append(AverageMeter())
LOSSMeters.append(AverageMeter())
max_acc = {'train' : AverageMeter(), 'val' : AverageMeter()}
max_acc5 = {'train' : AverageMeter(), 'val' : AverageMeter()}
min_loss = {'train' : AverageMeter(), 'val' : AverageMeter()}
last_acc = {'train' : AverageMeter(), 'val' : AverageMeter()}
last_acc5 = {'train' : AverageMeter(), 'val' : AverageMeter()}
# ---------------------------------------------------------------------
# Start training process ---------------------------------------------------------------
for epoch in range(start_epoch, args.EPOCH + 1):
info_log('Fold {}/{} Epoch {}/{}'.format(index + 1, args.KFOLD, epoch, args.EPOCH), type = args.INFO_SHOW)
info_log("-" * 15, type = args.INFO_SHOW)
for phase in ["train", "val"]:
correct_t = AverageMeter()
correct_t5 = AverageMeter()
loss_t = AverageMeter()
loss_detail_t = {}
if phase == 'train':
model.train(True)
optimizers = train_optimizers
else:
model.train(False)
if args.global_rank != -1:
image_data["train"].sampler.set_epoch(epoch)
image_data["val"].sampler.set_epoch(epoch)
data_bar = enumerate(image_data[phase])
if args.global_rank in [-1, 0]:
data_bar = tqdm.tqdm(data_bar, total = len(image_data[phase]))
for step, (data, label) in data_bar:
#loss, predicted, predicted5 = one_step(args["DEFAULT"], model, data, label, loss_funcs, optimizers, phase)
if phase == "train":
losses, predicted = train(model, data, label, loss_funcs, optimizers, args)
else:
losses, predicted = test(model, data, label, loss_funcs, optimizers, args)
loss = 0
for key in losses.keys():
loss += losses[key]
if step == 0:
loss_detail_t[key] = AverageMeter()
loss_detail_t[key].update(losses[key], data.size(0))
loss_t.update(loss, data.size(0))
correct_t.update((predicted == label).sum().item() / label.shape[0], label.shape[0])
#correct_t5.update((predicted5 == label.unsqueeze(1)).sum().item() / label.shape[0], label.shape[0])
for lr_scheduler in lr_schedulers:
lr_scheduler.step()
if args.global_rank in [-1, 0]:
# Recording loss and accuracy ---------------------------------
writer.add_scalar('Loss/{}'.format(phase), loss_t.avg, epoch)
writer.add_scalar('Accuracy/{}'.format(phase), correct_t.avg, epoch)
# -------------------------------------------------------------
# Save model --------------------------------------------------
# top5
# if max_acc5[phase].avg < correct_t5.avg:
# last_acc5[phase] = max_acc5[phase]
# max_acc5[phase] = correct_t5
# if phase == 'val':
# ACCMeters5[index] = correct_t
# save_data = model.state_dict()
# print('save')
# torch.save(save_data, './pkl/{}/fold_{}_best5_{}.pkl'.format(args.INDEX, index, args.INDEX))
# top1
if max_acc[phase].avg < correct_t.avg:
last_acc[phase] = max_acc[phase]
max_acc[phase] = correct_t
optimizers_state_dict = []
for tmp in train_optimizers:
optimizers_state_dict.append(tmp.state_dict())
lr_state_dict = []
for tmp in lr_schedulers:
lr_state_dict.append(tmp.state_dict())
if phase == 'val':
ACCMeters[index] = correct_t
LOSSMeters[index] = loss_t
save_data = {"Model" : model.state_dict(),
"Epoch" : args.EPOCH,
"Optimizer" : optimizers_state_dict,
"LR_scheduler" : lr_state_dict,
"Best ACC" : max_acc[phase].avg,
"Time" : args.start,
"Loss" : loss_t,
"ACC" : max_acc}
torch.save(save_data, './pkl/{}/{}_{}/fold_{}_best_{}.pkl'.format(args.INDEX, args.MODEL.lower(), args.BASIC_MODEL.lower(), index, args.INDEX))
optimizers_state_dict = []
for tmp in train_optimizers:
optimizers_state_dict.append(tmp.state_dict())
lr_state_dict = []
for tmp in lr_schedulers:
lr_state_dict.append(tmp.state_dict())
if phase == 'val':
ACCMeters[index] = correct_t
LOSSMeters[index] = loss_t
save_data = {"Model" : model.state_dict(),
"Epoch" : args.EPOCH,
"Optimizer" : optimizers_state_dict,
"LR_scheduler" : lr_state_dict,
"Best ACC" : max_acc[phase].avg,
"Time" : args.start,
"Loss" : loss_t,
"ACC" : max_acc}
torch.save(save_data, './pkl/{}/{}_{}/fold_{}_last_{}.pkl'.format(args.INDEX, args.MODEL.lower(), args.BASIC_MODEL.lower(), index, args.INDEX))
# -------------------------------------------------------------
info_log('Index : {}'.format(args.INDEX), type = args.INFO_SHOW)
info_log("dataset : {}".format(args.DATASET_NAME), type = args.INFO_SHOW)
info_log("Model name : {}_{}".format(args.MODEL, args.BASIC_MODEL), type = args.INFO_SHOW)
info_log("{} set loss : {:.6f}".format(phase, loss_t.avg), type = args.INFO_SHOW)
for key in loss_detail_t.keys():
info_log(" {} set {} : {:.6f}".format(phase, key, loss_detail_t[key].avg), type = args.INFO_SHOW)
info_log("{} set top-1 acc : {:.6f}%".format(phase, correct_t.avg * 100.), type = args.INFO_SHOW)
info_log("{} last update : {:.6f}%".format(phase, (max_acc[phase].avg - last_acc[phase].avg) * 100.), type = args.INFO_SHOW)
info_log("{} set best acc : {:.6f}%".format(phase, max_acc[phase].avg * 100.), type = args.INFO_SHOW)
# print("{} set acc(5) : {:.6f}%".format(phase, correct_t5.avg * 100.))
# print("{} last update(5) : {:.6f}%".format(phase, (max_acc5[phase].avg - last_acc5[phase].avg) * 100.))
# print("{} set max acc(5) : {:.6f}%".format(phase, max_acc5[phase].avg * 100.))
# for lr_scheduler in lr_schedulers:
# lr_scheduler.step()
# ---------------------------------------------------------------------
# Show the best result ----------------------------------------------------
if args.global_rank in [-1, 0]:
acc = 0
acc5 = 0
loss = 0
for idx in range(1, len(ACCMeters) + 1):
info_log("Fold {} best acc : {:.6f} acc(5) : {:.6f} loss : {:.6f}".format(idx, ACCMeters[idx - 1].avg, ACCMeters5[idx - 1].avg, LOSSMeters[idx - 1].avg), type = args.INFO_SHOW)
acc += ACCMeters[idx - 1].avg
acc5 += ACCMeters5[idx - 1].avg
loss += LOSSMeters[idx - 1].avg
info_log("Avg. ACC : {:.6f} Avg. ACC(5) : {:.6f} Avg. Loss : {:.6f}".format(acc / args.KFOLD, acc5 / args.KFOLD,loss / args.KFOLD), type = args.INFO_SHOW)
# =============================================================================
# Templet for recording values
# =============================================================================
class AverageMeter():
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.value = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value, batch):
self.value = value
self.sum += value * batch
self.count += batch
self.avg = self.sum / self.count
if __name__ == '__main__':
args = arg_reader.read_args(**cfg)
# Set DDP variables
args.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
# check if it can run on gpu
device_id = check_device(args.DEVICE, args.TRAIN_BATCH_SIZE, args.VAL_BATCH_SIZE)
args.TRAIN_TOTAL_BATCH_SIZE = args.TRAIN_BATCH_SIZE
args.VAL_TOTAL_BATCH_SIZE = args.VAL_BATCH_SIZE
if args.local_rank != -1:
assert torch.cuda.device_count() > args.local_rank
torch.cuda.set_device(args.local_rank)
device_id = torch.device('cuda', args.local_rank)
dist.init_process_group(backend='gloo', init_method='env://') # distributed backend
assert args.TRAIN_IMAGE_SIZE % args.world_size == 0, 'TRAIN_IMAGE_SIZE must be multiple of CUDA device count'
assert args.VAL_IMAGE_SIZE % args.world_size == 0, 'VAL_IMAGE_SIZE size be multiple of CUDA device count'
args.TRAIN_BATCH_SIZE = args.TRAIN_TOTAL_BATCH_SIZE // args.world_size
args.VAL_BATCH_SIZE = args.VAL_TOTAL_BATCH_SIZE // args.world_size
if args.global_rank in [-1, 0]:
if not os.path.exists("./pkl"):
os.mkdir("./pkl")
if not os.path.exists("./pkl/{}/".format(args.INDEX)):
os.mkdir("./pkl/{}/".format(args.INDEX))
if not os.path.exists("./pkl/{}/{}_{}".format(args.INDEX, args.MODEL.lower(), cfg.BASIC_MODEL.lower())):
os.mkdir("./pkl/{}/{}_{}".format(args.INDEX, args.MODEL.lower(), cfg.BASIC_MODEL.lower()))
elif not args.RESUME:
response = input("The experiment already exist ({}/{}_{}). Are you sure you want replace it? (y/n)".format(args.INDEX, args.MODEL.lower(), cfg.BASIC_MODEL.lower())).lower()
while response != 'y' and response != 'n':
response = input("The experiment already exist ({}/{}_{}). Are you sure you want replace it? (y/n)".format(args.INDEX, args.MODEL.lower(), cfg.BASIC_MODEL.lower())).lower()
if response == 'n':
import sys
sys.exit()
with open("./pkl/{}/{}_{}/logging.txt".format(args.INDEX, args.MODEL.lower(), cfg.BASIC_MODEL.lower()), "w") as f:
print(args, file = f)
info_log("Args : {}".format(args), type = args.INFO_SHOW)
# save file to specific direction -----------------------------------------
dst = "./pkl/{}/{}_{}".format(args.INDEX, args.MODEL.lower(), cfg.BASIC_MODEL.lower())
shutil.copy(src = os.path.join(os.getcwd(), __file__), dst = dst)
shutil.copy(src = os.path.join(os.getcwd(), "config.py"), dst = dst)
if "resnet" in args.MODEL.lower():
shutil.copy(src = os.path.join(os.getcwd(), "ResNet.py"), dst = dst)
else:
shutil.copy(src = os.path.join(os.getcwd(), "{}.py".format(args.MODEL)), dst = dst)
shutil.copy(src = os.path.join(os.getcwd(), "ResNet.py"), dst = dst)
shutil.copy(src = os.path.join(os.getcwd(), "loss.py"), dst = dst)
shutil.copy(src = os.path.join(os.getcwd(), "load_model.py"), dst = dst)
# -------------------------------------------------------------------------
info_log('Index : {}'.format(args.INDEX), type = args.INFO_SHOW)
info_log("dataset : {}".format(args.DATASET_NAME), type = args.INFO_SHOW)
args.start = time.time()
args.device_id = device_id
runs(args)
if args.global_rank in [-1, 0]:
info_log("Total training time : {:.2f} hours".format((time.time() - args.start) / 3600), type = args.INFO_SHOW)