-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data_mix_all_classify.py
executable file
·72 lines (59 loc) · 3.15 KB
/
load_data_mix_all_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 23 16:59:13 2021
@author: mmplab603
"""
import torchvision
from torch.utils.data import DataLoader
from data_transform import prepare_transforms
def load_data(args):
data_transforms = prepare_transforms(args)
all_image_datasets = torchvision.datasets.ImageFolder(args["DEFAULT"]["TRAIN_DATASET_PATH"], data_transforms["train"])
dataloader = []
dataset_sizes = []
if int(args["DEFAULT"]["KFOLD"]) != 1:
# package only use in this situation
from sklearn.model_selection import KFold
from torch.utils.data import Subset
kf = KFold(args["DEFAULT"].getint("KFOLD"), shuffle = True)
for train_idx, val_idx in kf.split(all_image_datasets):
# training set
train_dataset = Subset(all_image_datasets, train_idx)
trainloader = DataLoader(train_dataset,
batch_size = args["TRAIN"].getint("BATCH_SIZE"),
shuffle = args["TRAIN"].getboolean("SHFFLE"),
num_workers = args["TRAIN"].getint("NUMBER_WORKDERS"))
# validation set
val_dataset = Subset(all_image_datasets, val_idx)
valloader = DataLoader(val_dataset,
batch_size = args["TRAIN"].getint("BATCH_SIZE"),
shuffle = args["TRAIN"].getboolean("SHFFLE"),
num_workers = args["TRAIN"].getint("NUMBER_WORKDERS"))
# combine
dataloader.append({"train" : trainloader, "val" : valloader})
dataset_sizes.append({"train" : len(trainloader), "val" : len(valloader)})
else:
# package only use in this situation
import numpy as np
from torch.utils.data.sampler import SubsetRandomSampler
indices = list(range(len(all_image_datasets)))
dataset_size = len(all_image_datasets)
split = int(np.floor(args["DEFAULT"].getfloat("VAL_SPLIT")* dataset_size))
# shuffle the dataset
np.random.seed(0)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
trainloader = DataLoader(all_image_datasets,
batch_size = args["TRAIN"].getint("BATCH_SIZE"),
sampler = train_sampler,
num_workers = args["TRAIN"].getint("NUMBER_WORKDERS"))
valloader = DataLoader(all_image_datasets,
batch_size = args["VALIDATION"].getint("BATCH_SIZE"),
sampler = valid_sampler,
num_workers = args["VALIDATION"].getint("NUMBER_WORKDERS"))
dataloader.append({"train" : trainloader, "val" : valloader})
dataset_sizes.append({"train" : len(trainloader), "val" : len(valloader)})
return dataloader, dataset_sizes, all_image_datasets