-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit.py
46 lines (36 loc) · 1.38 KB
/
submit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
""" Submit code specific to the kaggle challenge"""
import os
import torch
from PIL import Image
import numpy as np
from predict import predict_img
from unet import UNet
# credits to https://stackoverflow.com/users/6076729/manuel-lagunas
def rle_encode(mask_image):
pixels = mask_image.flatten()
# We avoid issues with '1' at the start or end (at the corners of
# the original image) by setting those pixels to '0' explicitly.
# We do not expect these to be non-zero for an accurate mask,
# so this should not harm the score.
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] = runs[1::2] - runs[:-1:2]
return runs
def submit(net):
"""Used for Kaggle submission: predicts and encode all test images"""
dir = 'data/test/'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
N = len(list(os.listdir(dir)))
with open('SUBMISSION.csv', 'a') as f:
f.write('img,rle_mask\n')
for index, i in enumerate(os.listdir(dir)):
print('{}/{}'.format(index, N))
img = Image.open(dir + i)
mask = predict_img(net, img, device)
enc = rle_encode(mask)
f.write('{},{}\n'.format(i, ' '.join(map(str, enc))))
if __name__ == '__main__':
net = UNet(3, 1).cuda()
net.load_state_dict(torch.load('MODEL.pth'))
submit(net)