forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTestBatched.test_while.expect
63 lines (63 loc) · 2.82 KB
/
TestBatched.test_while.expect
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
graph(%a.1_data : Dynamic
%a.1_mask : Dynamic
%a.1_dims : Dynamic
%b_data : Dynamic
%b_mask : Dynamic
%b_dims : Dynamic) {
%6 : int = prim::Constant[value=1]()
%7 : int = prim::Constant[value=2147483647]()
%8 : Dynamic = aten::gt(%a.1_data, %b_data)
%9 : Dynamic = aten::mul(%a.1_mask, %b_mask)
%10 : Dynamic = aten::__or__(%a.1_dims, %b_dims)
%11 : bool = prim::TensorToBool(%8)
%12 : int = prim::Constant[value=0]()
%13 : Dynamic = aten::mul(%8, %9)
%14 : Dynamic = aten::sum(%13)
%15 : Dynamic = aten::gt(%14, %12)
%16 : bool = prim::TensorToBool(%15)
%17 : Dynamic, %18 : Dynamic, %19 : Dynamic, %a : Dynamic, %21 : Dynamic, %22 : Dynamic = prim::Loop(%7, %16, %8, %9, %10, %a.1_data, %a.1_mask, %a.1_dims)
block0(%loop_num : int, %cond_data.2 : Dynamic, %cond_mask.3 : Dynamic, %cond_dims : Dynamic, %6_data : Dynamic, %6_mask : Dynamic, %6_dims : Dynamic) {
%30 : Long() = prim::NumToTensor(%6)
%alpha : float = prim::TensorToNum(%30)
%data.1 : Dynamic = aten::sub(%6_data, %b_data, %alpha)
%mask : Dynamic = aten::mul(%6_mask, %b_mask)
%dims : Dynamic = aten::__or__(%6_dims, %b_dims)
%35 : Dynamic = aten::gt(%data.1, %b_data)
%36 : Dynamic = aten::mul(%mask, %b_mask)
%37 : Dynamic = aten::__or__(%dims, %b_dims)
%38 : bool = prim::TensorToBool(%35)
%39 : bool = prim::Constant[value=1]()
%40 : int = prim::Constant[value=1]()
%41 : Dynamic = aten::type_as(%cond_mask.3, %cond_data.2)
%cond_mask.1 : Dynamic = aten::mul(%cond_data.2, %41)
%43 : int = aten::dim(%cond_mask.1)
%44 : bool = aten::eq(%43, %40)
%cond_data : Dynamic, %cond_mask : Dynamic, %data : Dynamic = prim::If(%44)
block0() {
%48 : int = aten::dim(%data.1)
%49 : int = aten::sub(%48, %40)
%data.3 : Dynamic = prim::Loop(%49, %39, %cond_mask.1)
block0(%_ : int, %52 : Dynamic) {
%53 : int = aten::dim(%52)
%data.2 : Dynamic = aten::unsqueeze(%52, %53)
-> (%39, %data.2)
}
%cond_data.1 : Dynamic = aten::expand_as(%data.3, %data.1)
%cond_mask.2 : Dynamic = aten::expand_as(%data.3, %mask)
-> (%cond_data.1, %cond_mask.2, %data.3)
}
block1() {
-> (%cond_mask.1, %cond_mask.1, %cond_mask.1)
}
%res_data : Dynamic = aten::where(%cond_data, %data.1, %6_data)
%res_mask : Dynamic = aten::where(%cond_mask, %mask, %6_mask)
%res_dims : Dynamic = aten::__or__(%dims, %6_dims)
%60 : int = prim::Constant[value=0]()
%61 : Dynamic = aten::mul(%35, %36)
%62 : Dynamic = aten::sum(%61)
%63 : Dynamic = aten::gt(%62, %60)
%64 : bool = prim::TensorToBool(%63)
-> (%64, %35, %36, %37, %res_data, %res_mask, %res_dims)
}
return (%a, %21, %22);
}