From a4527f4c8ef00539cb39fa860beb0fdf270f0763 Mon Sep 17 00:00:00 2001 From: Daniel Date: Fri, 24 May 2024 13:45:24 +0200 Subject: [PATCH 1/3] Clean up deprecated args, lintr --- R/dof_kenward.R | 2 +- R/methods_BayesFactor.R | 42 ++++----- R/methods_DirichletReg.R | 30 ++++--- R/methods_aov.R | 28 ------ R/methods_htest.R | 123 ++++++++++---------------- R/methods_rstanarm.R | 2 +- man/model_parameters.BFBayesFactor.Rd | 38 ++++---- man/model_parameters.aov.Rd | 5 -- man/model_parameters.htest.Rd | 10 --- man/select_parameters.Rd | 2 +- 10 files changed, 104 insertions(+), 178 deletions(-) diff --git a/R/dof_kenward.R b/R/dof_kenward.R index aa9f00c59..4d8976ace 100644 --- a/R/dof_kenward.R +++ b/R/dof_kenward.R @@ -263,7 +263,7 @@ dof_kenward <- function(model) { Gp <- lme4::getME(model, "Gp") n.RT <- length(Gp) - 1 ## Number of random terms (i.e. of (|)'s) - n.lev.by.RT <- sapply(lme4::getME(model, "flist"), function(x) length(levels(x))) + n.lev.by.RT <- sapply(lme4::getME(model, "flist"), nlevels) n.comp.by.RT <- .get.RT.dim.by.RT(model) n.parm.by.RT <- (n.comp.by.RT + 1) * n.comp.by.RT / 2 n.RE.by.RT <- diff(Gp) diff --git a/R/methods_BayesFactor.R b/R/methods_BayesFactor.R index 99573ef62..ee21c8f56 100644 --- a/R/methods_BayesFactor.R +++ b/R/methods_BayesFactor.R @@ -13,7 +13,6 @@ #' @inheritParams bayestestR::describe_posterior #' @inheritParams p_value #' @inheritParams model_parameters.htest -#' @param cohens_d,cramers_v Deprecated. Please use `effectsize_type`. #' #' @details #' The meaning of the extracted parameters: @@ -29,24 +28,26 @@ #' the *g* parameters; See the *Bayes Factors for ANOVAs* paper #' (\doi{10.1016/j.jmp.2012.08.001}). #' -#' @examples +#' @examplesIf require("BayesFactor") #' \donttest{ -#' if (require("BayesFactor")) { -#' # Bayesian t-test -#' model <- ttestBF(x = rnorm(100, 1, 1)) -#' model_parameters(model) -#' model_parameters(model, cohens_d = TRUE, ci = .9) +#' # Bayesian t-test +#' model <- BayesFactor::ttestBF(x = rnorm(100, 1, 1)) +#' model_parameters(model) +#' model_parameters(model, effectsize_type = "cohens_d", ci = 0.9) #' -#' # Bayesian contingency table analysis -#' data(raceDolls) -#' bf <- contingencyTableBF(raceDolls, sampleType = "indepMulti", fixedMargin = "cols") -#' model_parameters(bf, -#' centrality = "mean", -#' dispersion = TRUE, -#' verbose = FALSE, -#' effectsize_type = "cramers_v" -#' ) -#' } +#' # Bayesian contingency table analysis +#' data(raceDolls) +#' bf <- BayesFactor::contingencyTableBF( +#' raceDolls, +#' sampleType = "indepMulti", +#' fixedMargin = "cols" +#' ) +#' model_parameters(bf, +#' centrality = "mean", +#' dispersion = TRUE, +#' verbose = FALSE, +#' effectsize_type = "cramers_v" +#' ) #' } #' @return A data frame of indices related to the model's parameters. #' @export @@ -62,16 +63,9 @@ model_parameters.BFBayesFactor <- function(model, effectsize_type = NULL, include_proportions = FALSE, verbose = TRUE, - cohens_d = NULL, - cramers_v = NULL, ...) { insight::check_if_installed("BayesFactor") - ## TODO: remove in a later update - # handle deprected arguments ------ - if (!is.null(cramers_v)) effectsize_type <- "cramers_v" - if (!is.null(cohens_d)) effectsize_type <- "cohens_d" - if (any(startsWith(names(model@numerator), "Null"))) { if (isTRUE(verbose)) { insight::format_alert( diff --git a/R/methods_DirichletReg.R b/R/methods_DirichletReg.R index eb97718f3..300a8c2a0 100644 --- a/R/methods_DirichletReg.R +++ b/R/methods_DirichletReg.R @@ -21,20 +21,22 @@ model_parameters.DirichletRegModel <- function(model, ## TODO check merge by - junk <- utils::capture.output(out <- .model_parameters_generic( # nolint - model = model, - ci = ci, - component = component, - bootstrap = bootstrap, - iterations = iterations, - merge_by = merge_by, - standardize = standardize, - exponentiate = exponentiate, - p_adjust = p_adjust, - keep_parameters = keep, - drop_parameters = drop, - ... - )) + junk <- utils::capture.output({ + out <- .model_parameters_generic( + model = model, + ci = ci, + component = component, + bootstrap = bootstrap, + iterations = iterations, + merge_by = merge_by, + standardize = standardize, + exponentiate = exponentiate, + p_adjust = p_adjust, + keep_parameters = keep, + drop_parameters = drop, + ... + ) + }) out$Response[is.na(out$Response)] <- "" attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model)) diff --git a/R/methods_aov.R b/R/methods_aov.R index 506aae36f..a021114d9 100644 --- a/R/methods_aov.R +++ b/R/methods_aov.R @@ -35,7 +35,6 @@ #' (e.g., `"g"`, `"l"`, `"two"`...). See section *One-Sided CIs* in #' the [effectsize_CIs vignette](https://easystats.github.io/effectsize/). #' @inheritParams model_parameters.default -#' @param omega_squared,eta_squared,epsilon_squared Deprecated. Please use `effectsize_type`. #' @param ... Arguments passed to [`effectsize::effectsize()`]. For example, #' to calculate _partial_ effect sizes types, use `partial = TRUE`. For objects #' of class `htest` or `BFBayesFactor`, `adjust = TRUE` can be used to return @@ -110,34 +109,7 @@ model_parameters.aov <- function(model, drop = NULL, table_wide = FALSE, verbose = TRUE, - omega_squared = NULL, - eta_squared = NULL, - epsilon_squared = NULL, ...) { - ## TODO: remove in a later update - # handle deprected arguments ------ - if (!is.null(omega_squared)) { - insight::format_warning( - "Argument `omega_squared` is deprecated.", - "Please use `effectsize_type = \"omega\"` instead." - ) - effectsize_type <- "omega" - } - if (!is.null(eta_squared)) { - insight::format_warning( - "Argument `eta_squared` is deprecated.", - "Please use `effectsize_type = \"eta\"` instead." - ) - effectsize_type <- "eta" - } - if (!is.null(epsilon_squared)) { - insight::format_warning( - "Argument `epsilon_squared` is deprecated.", - "Please use `effectsize_type = \"epsilon\"` instead." - ) - effectsize_type <- "epsilon" - } - # save model object, for later checks original_model <- model object_name <- insight::safe_deparse_symbol(substitute(model)) diff --git a/R/methods_htest.R b/R/methods_htest.R index 4d4648025..8a0becc1d 100644 --- a/R/methods_htest.R +++ b/R/methods_htest.R @@ -8,8 +8,6 @@ #' only applies to objects from `chisq.test()` or `oneway.test()`. #' @inheritParams model_parameters.default #' @inheritParams model_parameters.aov -#' @param cramers_v,phi,cohens_g,standardized_d,hedges_g,omega_squared,eta_squared,epsilon_squared,rank_biserial,rank_epsilon_squared,kendalls_w Deprecated. Please use `effectsize_type`. -#' #' @inherit effectsize::effectsize details #' #' @examples @@ -51,30 +49,7 @@ model_parameters.htest <- function(model, cramers_v = NULL, phi = NULL, standardized_d = NULL, - hedges_g = NULL, - omega_squared = NULL, - eta_squared = NULL, - epsilon_squared = NULL, - cohens_g = NULL, - rank_biserial = NULL, - rank_epsilon_squared = NULL, - kendalls_w = NULL, ...) { - ## TODO: remove in a later update - # handle deprected arguments ------ - if (!is.null(cramers_v)) effectsize_type <- "cramers_v" - if (!is.null(phi)) effectsize_type <- "phi" - if (!is.null(standardized_d)) effectsize_type <- "standardized_d" - if (!is.null(hedges_g)) effectsize_type <- "hedges_g" - if (!is.null(omega_squared)) effectsize_type <- "omega_squared" - if (!is.null(eta_squared)) effectsize_type <- "eta_squared" - if (!is.null(epsilon_squared)) effectsize_type <- "epsilon_squared" - if (!is.null(cohens_g)) effectsize_type <- "cohens_g" - if (!is.null(rank_biserial)) effectsize_type <- "rank_biserial" - if (!is.null(rank_epsilon_squared)) effectsize_type <- "rank_epsilon_squared" - if (!is.null(kendalls_w)) effectsize_type <- "rank_epsilon_squared" - - if (bootstrap) { insight::format_error("Bootstrapped h-tests are not yet implemented.") } else { @@ -207,10 +182,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { #' @keywords internal .extract_htest_correlation <- function(model) { - names <- unlist(strsplit(model$data.name, " (and|by) ")) + data_names <- unlist(strsplit(model$data.name, " (and|by) ")) out <- data.frame( - Parameter1 = names[1], - Parameter2 = names[2], + Parameter1 = data_names[1], + Parameter2 = data_names[2], stringsAsFactors = FALSE ) @@ -258,10 +233,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { .extract_htest_ranktest <- function(model) { # survey if (grepl("design-based", tolower(model$method), fixed = TRUE)) { - names <- gsub("~", "", unlist(strsplit(model$data.name, " + ", fixed = TRUE)), fixed = TRUE) + data_names <- gsub("~", "", unlist(strsplit(model$data.name, " + ", fixed = TRUE)), fixed = TRUE) out <- data.frame( - Parameter1 = names[1], - Parameter2 = names[2], + Parameter1 = data_names[1], + Parameter2 = data_names[2], Statistic = model$statistic[[1]], df_error = model$parameter[[1]], Method = model$method, @@ -272,10 +247,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { colnames(out)[colnames(out) == "Statistic"] <- names(model$statistic)[1] } else { if (grepl(" (and|by) ", model$data.name)) { - names <- unlist(strsplit(model$data.name, " (and|by) ")) + data_names <- unlist(strsplit(model$data.name, " (and|by) ")) out <- data.frame( - Parameter1 = names[1], - Parameter2 = names[2], + Parameter1 = data_names[1], + Parameter2 = data_names[2], stringsAsFactors = FALSE ) } else { @@ -312,7 +287,7 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { data.frame( df = model$Df[1], df_error = model$Df[2], - `F` = model$`F value`[1], + `F` = model$`F value`[1], # nolint p = model$`Pr(>F)`[1], Method = "Levene's Test for Homogeneity of Variance", stringsAsFactors = FALSE @@ -331,7 +306,7 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { Estimate = model$estimate, df = model$parameter[1], df_error = model$parameter[2], - `F` = model$statistic, + `F` = model$statistic, # nolint CI_low = model$conf.int[1], CI_high = model$conf.int[2], p = model$p.value, @@ -349,10 +324,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { .extract_htest_ttest <- function(model, standardized_d = NULL, hedges_g = NULL) { # survey if (grepl("design-based", tolower(model$method), fixed = TRUE)) { - names <- unlist(strsplit(model$data.name, " ~ ", fixed = TRUE)) + data_names <- unlist(strsplit(model$data.name, " ~ ", fixed = TRUE)) out <- data.frame( - Parameter1 = names[1], - Parameter2 = names[2], + Parameter1 = data_names[1], + Parameter2 = data_names[2], Difference = model$estimate[[1]], t = model$statistic[[1]], df_error = model$parameter[[1]], @@ -365,10 +340,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { } else { paired_test <- startsWith(model$method, "Paired") && length(model$estimate) == 1 if (grepl(" and ", model$data.name, fixed = TRUE) && isFALSE(paired_test)) { - names <- unlist(strsplit(model$data.name, " and ", fixed = TRUE)) + data_names <- unlist(strsplit(model$data.name, " and ", fixed = TRUE)) out <- data.frame( - Parameter1 = names[1], - Parameter2 = names[2], + Parameter1 = data_names[1], + Parameter2 = data_names[2], Mean_Parameter1 = model$estimate[1], Mean_Parameter2 = model$estimate[2], Difference = model$estimate[1] - model$estimate[2], @@ -382,10 +357,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { ) attr(out, "mean_group_values") <- gsub("mean in group ", "", names(model$estimate), fixed = TRUE) } else if (isTRUE(paired_test)) { - names <- unlist(strsplit(model$data.name, " (and|by) ")) + data_names <- unlist(strsplit(model$data.name, " (and|by) ")) out <- data.frame( - Parameter = names[1], - Group = names[2], + Parameter = data_names[1], + Group = data_names[2], Difference = model$estimate, t = model$statistic, df_error = model$parameter, @@ -397,10 +372,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { ) } else if (grepl(" by ", model$data.name, fixed = TRUE)) { if (length(model$estimate) == 1) { - names <- unlist(strsplit(model$data.name, " by ", fixed = TRUE)) + data_names <- unlist(strsplit(model$data.name, " by ", fixed = TRUE)) out <- data.frame( - Parameter = names[1], - Group = names[2], + Parameter = data_names[1], + Group = data_names[2], Difference = model$estimate, CI = 0.95, CI_low = as.vector(model$conf.int[, 1]), @@ -412,10 +387,10 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { stringsAsFactors = FALSE ) } else { - names <- unlist(strsplit(model$data.name, " by ", fixed = TRUE)) + data_names <- unlist(strsplit(model$data.name, " by ", fixed = TRUE)) out <- data.frame( - Parameter = names[1], - Group = names[2], + Parameter = data_names[1], + Group = data_names[2], Mean_Group1 = model$estimate[1], Mean_Group2 = model$estimate[2], Difference = model$estimate[1] - model$estimate[2], @@ -458,7 +433,7 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { #' @keywords internal .extract_htest_oneway <- function(model) { data.frame( - `F` = model$statistic, + `F` = model$statistic, # nolint df = model$parameter[1], df_error = model$parameter[2], p = model$p.value, @@ -482,7 +457,7 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { } if (names(model$statistic) == "F") { data.frame( - `F` = model$statistic, + `F` = model$statistic, # nolint df = model$parameter[1], df_error = model$parameter[2], p = model$p.value, @@ -498,27 +473,25 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { stringsAsFactors = FALSE ) } + } else if (!is.null(model$estimate) && identical(names(model$estimate), "odds ratio")) { + data.frame( + `Odds Ratio` = model$estimate, + # CI = attributes(model$conf.int)$conf.level, + CI_low = model$conf.int[1], + CI_high = model$conf.int[2], + p = model$p.value, + Method = model$method, + stringsAsFactors = FALSE, + check.names = FALSE + ) } else { - if (!is.null(model$estimate) && identical(names(model$estimate), "odds ratio")) { - data.frame( - `Odds Ratio` = model$estimate, - # CI = attributes(model$conf.int)$conf.level, - CI_low = model$conf.int[1], - CI_high = model$conf.int[2], - p = model$p.value, - Method = model$method, - stringsAsFactors = FALSE, - check.names = FALSE - ) - } else { - data.frame( - Chi2 = model$statistic, - df = model$parameter, - p = model$p.value, - Method = model$method, - stringsAsFactors = FALSE - ) - } + data.frame( + Chi2 = model$statistic, + df = model$parameter, + p = model$p.value, + Method = model$method, + stringsAsFactors = FALSE + ) } } @@ -684,7 +657,7 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { attr(params, "text_alternative") <- h1_text } - dot.arguments <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x) + dot.arguments <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x) if ("digits" %in% names(dot.arguments)) { attr(params, "digits") <- eval(dot.arguments[["digits"]]) } else { @@ -731,7 +704,7 @@ model_parameters.svytable <- function(model, verbose = TRUE, ...) { p_adjust = NULL, verbose = TRUE, ...) { - dot.arguments <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x) + dot.arguments <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x) attr(params, "p_adjust") <- p_adjust attr(params, "model_class") <- class(model) diff --git a/R/methods_rstanarm.R b/R/methods_rstanarm.R index f7a40353a..625e2b68b 100644 --- a/R/methods_rstanarm.R +++ b/R/methods_rstanarm.R @@ -101,7 +101,7 @@ model_parameters.stanreg <- function(model, if (effects != "fixed") { random_effect_levels <- which( - params$Effects %in% "random" & !startsWith(params$Parameter, "Sigma[") + params$Effects == "random" & !startsWith(params$Parameter, "Sigma[") ) if (length(random_effect_levels) && isFALSE(group_level)) { params <- params[-random_effect_levels, , drop = FALSE] diff --git a/man/model_parameters.BFBayesFactor.Rd b/man/model_parameters.BFBayesFactor.Rd index 328e25f3d..b24faeaa8 100644 --- a/man/model_parameters.BFBayesFactor.Rd +++ b/man/model_parameters.BFBayesFactor.Rd @@ -17,8 +17,6 @@ effectsize_type = NULL, include_proportions = FALSE, verbose = TRUE, - cohens_d = NULL, - cramers_v = NULL, ... ) } @@ -71,8 +69,6 @@ information is often redundant.} \item{verbose}{Toggle off warnings.} -\item{cohens_d, cramers_v}{Deprecated. Please use \code{effectsize_type}.} - \item{...}{Additional arguments to be passed to or from methods.} } \value{ @@ -97,22 +93,26 @@ the \emph{g} parameters; See the \emph{Bayes Factors for ANOVAs} paper } } \examples{ +\dontshow{if (require("BayesFactor")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf} \donttest{ -if (require("BayesFactor")) { - # Bayesian t-test - model <- ttestBF(x = rnorm(100, 1, 1)) - model_parameters(model) - model_parameters(model, cohens_d = TRUE, ci = .9) +# Bayesian t-test +model <- BayesFactor::ttestBF(x = rnorm(100, 1, 1)) +model_parameters(model) +model_parameters(model, effectsize_type = "cohens_d", ci = 0.9) - # Bayesian contingency table analysis - data(raceDolls) - bf <- contingencyTableBF(raceDolls, sampleType = "indepMulti", fixedMargin = "cols") - model_parameters(bf, - centrality = "mean", - dispersion = TRUE, - verbose = FALSE, - effectsize_type = "cramers_v" - ) -} +# Bayesian contingency table analysis +data(raceDolls) +bf <- BayesFactor::contingencyTableBF( + raceDolls, + sampleType = "indepMulti", + fixedMargin = "cols" +) +model_parameters(bf, + centrality = "mean", + dispersion = TRUE, + verbose = FALSE, + effectsize_type = "cramers_v" +) } +\dontshow{\}) # examplesIf} } diff --git a/man/model_parameters.aov.Rd b/man/model_parameters.aov.Rd index 0b769fb43..16f1d249e 100644 --- a/man/model_parameters.aov.Rd +++ b/man/model_parameters.aov.Rd @@ -18,9 +18,6 @@ drop = NULL, table_wide = FALSE, verbose = TRUE, - omega_squared = NULL, - eta_squared = NULL, - epsilon_squared = NULL, ... ) @@ -99,8 +96,6 @@ be in the same row. Default: \code{FALSE}.} \item{verbose}{Toggle warnings and messages.} -\item{omega_squared, eta_squared, epsilon_squared}{Deprecated. Please use \code{effectsize_type}.} - \item{...}{Arguments passed to \code{\link[effectsize:effectsize]{effectsize::effectsize()}}. For example, to calculate \emph{partial} effect sizes types, use \code{partial = TRUE}. For objects of class \code{htest} or \code{BFBayesFactor}, \code{adjust = TRUE} can be used to return diff --git a/man/model_parameters.htest.Rd b/man/model_parameters.htest.Rd index f58bba0b3..ac4b8007f 100644 --- a/man/model_parameters.htest.Rd +++ b/man/model_parameters.htest.Rd @@ -15,14 +15,6 @@ cramers_v = NULL, phi = NULL, standardized_d = NULL, - hedges_g = NULL, - omega_squared = NULL, - eta_squared = NULL, - epsilon_squared = NULL, - cohens_g = NULL, - rank_biserial = NULL, - rank_epsilon_squared = NULL, - kendalls_w = NULL, ... ) @@ -56,8 +48,6 @@ models, can also be a character vector with multiple effect size names.} \item{verbose}{Toggle warnings and messages.} -\item{cramers_v, phi, cohens_g, standardized_d, hedges_g, omega_squared, eta_squared, epsilon_squared, rank_biserial, rank_epsilon_squared, kendalls_w}{Deprecated. Please use \code{effectsize_type}.} - \item{...}{Arguments passed to or from other methods. For instance, when \code{bootstrap = TRUE}, arguments like \code{type} or \code{parallel} are passed down to \code{bootstrap_model()}.} diff --git a/man/select_parameters.Rd b/man/select_parameters.Rd index 5fd2e981f..edff5d02c 100644 --- a/man/select_parameters.Rd +++ b/man/select_parameters.Rd @@ -33,7 +33,7 @@ select_parameters(model, ...) \item{k}{ the multiple of the number of degrees of freedom used for the penalty. Only \code{k = 2} gives the genuine AIC: \code{k = log(n)} is sometimes - referred to as BIC or SBC. + referred to as BIC or \abbr{SBC}. } } \value{ From 78949e22c5dce41fdd14338087e93c030fe6886e Mon Sep 17 00:00:00 2001 From: Daniel Date: Fri, 24 May 2024 13:47:27 +0200 Subject: [PATCH 2/3] desc, news --- DESCRIPTION | 2 +- NEWS.md | 7 +++++++ 2 files changed, 8 insertions(+), 1 deletion(-) diff --git a/DESCRIPTION b/DESCRIPTION index 624e8dda0..7aab1e523 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: parameters Title: Processing of Model Parameters -Version: 0.21.7.1 +Version: 0.21.7.2 Authors@R: c(person(given = "Daniel", family = "Lüdecke", diff --git a/NEWS.md b/NEWS.md index 35dfb457c..cbda7012f 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,10 @@ +# parameters 0.21.8 + +## Breaking changes + +* Deprecated arguments in `model_parameters()` for `htest`, `aov` and + `BFBayesFactor` objects were removed. + # parameters 0.21.7 ## Changes From cba4114142f0e90240de08d42045749e3c75853e Mon Sep 17 00:00:00 2001 From: Daniel Date: Sun, 26 May 2024 18:37:22 +0200 Subject: [PATCH 3/3] update --- DESCRIPTION | 2 +- R/methods_htest.R | 3 --- man/model_parameters.htest.Rd | 3 --- 3 files changed, 1 insertion(+), 7 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 7aab1e523..f0c0bd102 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -218,4 +218,4 @@ Config/Needs/website: r-lib/pkgdown, easystats/easystatstemplate Config/rcmdcheck/ignore-inconsequential-notes: true -Remotes: easystats/insight, easystats/datawizard, easystats/performance, easystats/bayestestR +Remotes: easystats/insight, easystats/datawizard, easystats/performance, easystats/bayestestR, easystats/effectsize diff --git a/R/methods_htest.R b/R/methods_htest.R index 8a0becc1d..c2c7f4e1b 100644 --- a/R/methods_htest.R +++ b/R/methods_htest.R @@ -46,9 +46,6 @@ model_parameters.htest <- function(model, bootstrap = FALSE, effectsize_type = NULL, verbose = TRUE, - cramers_v = NULL, - phi = NULL, - standardized_d = NULL, ...) { if (bootstrap) { insight::format_error("Bootstrapped h-tests are not yet implemented.") diff --git a/man/model_parameters.htest.Rd b/man/model_parameters.htest.Rd index ac4b8007f..dcd667b86 100644 --- a/man/model_parameters.htest.Rd +++ b/man/model_parameters.htest.Rd @@ -12,9 +12,6 @@ bootstrap = FALSE, effectsize_type = NULL, verbose = TRUE, - cramers_v = NULL, - phi = NULL, - standardized_d = NULL, ... )