forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
236 lines (215 loc) · 10.5 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
import time
import ctypes
import argparse
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from image_batcher import ImageBatcher
from visualize import visualize_detections
class TensorRTInfer:
"""
Implements inference for the Model TensorRT engine.
"""
def __init__(self, engine_path, preprocessor, detection_type, iou_threshold):
"""
:param engine_path: The path to the serialized engine to load from disk.
"""
self.preprocessor = preprocessor
self.detection_type = detection_type
self.iou_threshold = iou_threshold
# Load TRT engine
self.logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(self.logger, namespace="")
with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
self.engine = runtime.deserialize_cuda_engine(f.read())
self.context = self.engine.create_execution_context()
assert self.engine
assert self.context
# Setup I/O bindings
self.inputs = []
self.outputs = []
self.allocations = []
for i in range(self.engine.num_bindings):
is_input = False
if self.engine.binding_is_input(i):
is_input = True
name = self.engine.get_binding_name(i)
dtype = self.engine.get_binding_dtype(i)
shape = self.engine.get_binding_shape(i)
if is_input:
self.batch_size = shape[0]
size = np.dtype(trt.nptype(dtype)).itemsize
for s in shape:
size *= s
allocation = cuda.mem_alloc(size)
binding = {
'index': i,
'name': name,
'dtype': np.dtype(trt.nptype(dtype)),
'shape': list(shape),
'allocation': allocation,
}
self.allocations.append(allocation)
if self.engine.binding_is_input(i):
self.inputs.append(binding)
else:
self.outputs.append(binding)
assert self.batch_size > 0
assert len(self.inputs) > 0
assert len(self.outputs) > 0
assert len(self.allocations) > 0
def input_spec(self):
"""
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
:return: Two items, the shape of the input tensor and its (numpy) datatype.
"""
return self.inputs[0]['shape'], self.inputs[0]['dtype']
def output_spec(self):
"""
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
"""
specs = []
for o in self.outputs:
specs.append((o['shape'], o['dtype']))
return specs
def infer(self, batch, scales=None, nms_threshold=None):
"""
Execute inference on a batch of images. The images should already be batched and preprocessed, as prepared by
the ImageBatcher class. Memory copying to and from the GPU device will be performed here.
:param batch: A numpy array holding the image batch.
:param scales: The image resize scales for each image in this batch. Default: No scale postprocessing applied.
:return: A nested list for each image in the batch and each detection in the list.
"""
# Prepare the output data
outputs = []
for shape, dtype in self.output_spec():
outputs.append(np.zeros(shape, dtype))
# Process I/O and execute the network
cuda.memcpy_htod(self.inputs[0]['allocation'], np.ascontiguousarray(batch))
self.context.execute_v2(self.allocations)
for o in range(len(outputs)):
cuda.memcpy_dtoh(outputs[o], self.outputs[o]['allocation'])
# Process the results
nums = outputs[0]
boxes = outputs[1]
scores = outputs[2]
classes = outputs[3]
# One additional output for segmentation masks
if len(outputs) == 5:
masks = outputs[4]
detections = []
normalized = (np.max(boxes) < 2.0)
for i in range(self.batch_size):
detections.append([])
for n in range(int(nums[i])):
# Depending on preprocessor, box scaling will be slightly different.
if self.preprocessor == "fixed_shape_resizer":
scale_x = self.inputs[0]['shape'][1] if normalized else 1.0
scale_y = self.inputs[0]['shape'][2] if normalized else 1.0
if scales and i < len(scales):
scale_x /= scales[i][0]
scale_y /= scales[i][1]
if nms_threshold and scores[i][n] < nms_threshold:
continue
# Depending on detection type you need slightly different data.
if self.detection_type == 'bbox':
mask = None
# Segmentation is only supported with Mask R-CNN, which has
# fixed_shape_resizer as image_resizer (lookup pipeline.config)
elif self.detection_type == 'segmentation':
# Select a mask
mask = masks[i][n]
# Slight scaling, to get binary masks after float32 -> uint8
# conversion, if not scaled all pixels are zero.
mask = mask > self.iou_threshold
# Convert float32 -> uint8.
mask = mask.astype(np.uint8)
elif self.preprocessor == "keep_aspect_ratio_resizer":
# No segmentation models with keep_aspect_ratio_resizer
mask = None
scale = self.inputs[0]['shape'][2] if normalized else 1.0
if scales and i < len(scales):
scale /= scales[i]
scale_y = scale
scale_x = scale
if nms_threshold and scores[i][n] < nms_threshold:
continue
# Append to detections
detections[i].append({
'ymin': boxes[i][n][0] * scale_y,
'xmin': boxes[i][n][1] * scale_x,
'ymax': boxes[i][n][2] * scale_y,
'xmax': boxes[i][n][3] * scale_x,
'score': scores[i][n],
'class': int(classes[i][n]),
'mask': mask,
})
return detections
def main(args):
output_dir = os.path.realpath(args.output)
os.makedirs(output_dir, exist_ok=True)
labels = []
if args.labels:
with open(args.labels) as f:
for i, label in enumerate(f):
labels.append(label.strip())
trt_infer = TensorRTInfer(args.engine, args.preprocessor, args.detection_type, args.iou_threshold)
batcher = ImageBatcher(args.input, *trt_infer.input_spec(), preprocessor=args.preprocessor)
for batch, images, scales in batcher.get_batch():
print("Processing Image {} / {}".format(batcher.image_index, batcher.num_images), end="\r")
detections = trt_infer.infer(batch, scales, args.nms_threshold)
for i in range(len(images)):
basename = os.path.splitext(os.path.basename(images[i]))[0]
# Image Visualizations
output_path = os.path.join(output_dir, "{}.png".format(basename))
visualize_detections(images[i], output_path, detections[i], labels)
# Text Results
output_results = ""
for d in detections[i]:
line = [d['xmin'], d['ymin'], d['xmax'], d['ymax'], d['score'], d['class']]
output_results += "\t".join([str(f) for f in line]) + "\n"
with open(os.path.join(args.output, "{}.txt".format(basename)), "w") as f:
f.write(output_results)
print()
print("Finished Processing")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--engine", default=None, help="The serialized TensorRT engine")
parser.add_argument("-i", "--input", default=None, help="Path to the image or directory to process")
parser.add_argument("-o", "--output", default=None, help="Directory where to save the visualization results")
parser.add_argument("-l", "--labels", default="./labels_coco.txt",
help="File to use for reading the class labels from, default: ./labels_coco.txt")
parser.add_argument("-d", "--detection_type", default="bbox", choices=["bbox", "segmentation"],
help="Detection type for COCO, either bbox or if you are using Mask R-CNN's instance segmentation - segmentation")
parser.add_argument("-t", "--nms_threshold", type=float,
help="Override the score threshold for the NMS operation, if higher than the threshold in the engine.")
parser.add_argument("--iou_threshold", default=0.5, type=float,
help="Select the IoU threshold for the mask segmentation. Range is 0 to 1. Pixel values more than threshold will become 1, less 0")
parser.add_argument("--preprocessor", default="fixed_shape_resizer", choices=["fixed_shape_resizer", "keep_aspect_ratio_resizer"],
help="Select the image preprocessor to use based on your pipeline.config, either 'fixed_shape_resizer' or 'keep_aspect_ratio_resizer', default: fixed_shape_resizer")
args = parser.parse_args()
if not all([args.engine, args.input, args.output, args.preprocessor]):
parser.print_help()
print("\nThese arguments are required: --engine --input --output and --preprocessor")
sys.exit(1)
main(args)